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The solution of the 

equations for ε= 0 (the 

uncoupled case) leads to 

the figure on the right, 

which is a surface of 

section plot on the plane

x(tk), px(tk), (every time

y(tk)=0).

Thus, in the uncoupled (integrable) case, all curves 
correspond to periodic and quasiperiodic orbits with 
two frequencies ω1 and ω2. 

1. INTRODUCTION 

H=E, energy constant 



Surface of section of the orbits in the plane x(tk), px(tk), for ε=0.02

Magnification 
where weak 
chaos occurs!

How does chaos arise, when the coupling is turned on?
All we need to do is increase slowly the value of ε > 0 to discover an 
amazingly complex network of chaotic domains. Where are they?

Simple Periodic 
Orbits



What happens if we further increase ε, say, ε=0.2?

There are regular regions and also “strongly” and “weakly” 
chaotic domains and they grow with E !



2.  SIMPLE PERIODIC ORBITS, WEAK AND STRONG CHAOS

We study Hamiltonian dynamical systems of N degrees of 
freedom (dof), in an 2N – dimensional phase space of position 
and momentum coordinates, whose equations of motion  are 
written in the form

(1)

H being the Hamiltonian function. If H does not explicitly 
depend on the time t, it represents a first integral, whose 
value gives the total energy of the system E. I will assume 
that the Hamiltonian can be expanded in power series as a sum 
of homogeneous polynomials of degree m ≥2

(2)

so that the origin  is a stable equilibrium point of the system. 
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We now assume that Hm = 0 for all m > 2 and that the linear 
equations resulting from (1) and (2), yield a matrix, whose 
eigenvalues all occur in conjugate imaginary pairs, ±iωq , and 
thus provide the frequencies of the so-called normal mode 
oscillations of the linearized system. 

where Pq , Qq are the normal mode coordinates. Then, 
according to a famous theorem by Lyapunov, if none of the 
ratios of these eigenvalues, ωj/ωk is rational, for any j, k = 
1,2,…,N, j ≠ k, all linear normal modes continue to exist as 
periodic solutions of the nonlinear system. 

If the frequencies for Hm ǂ 0 are close to those of the 
linear modes they are examples of what we call simple 
periodic orbits (SPOs), where all variables oscillate with the 
same frequency.
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• What is the importance of these SPOs also called nonlinear 
normal modes (NNMs)? Once we have established that they 
exist, what can we say about their stability under small 
perturbations of their initial conditions? 

• How do these properties change as we vary the total energy? 
Do such changes affect only the motion in the immediate 
vicinity of the NNMs or can they also influence the dynamics of 
the system more globally? 

• Introducing the spectrum of Lyapunov exponents, I will point 
out how its properties are connected to the emergence of 
strongly (large scale) chaotic behavior in the solutions. 

• I shall also describe the method of the Generalized Alignment 
Indices GALIk, k=1,2,…,2N, which efficiently identify domains 
of chaos and order in N dof Hamiltonian systems and 2N-
dimensional (2N-D) symplectic maps. 



3.  INDICATORS OF REGULAR AND CHAOTIC DYNAMICS

An interesting question in Hamiltonian dynamics concerns the 
connection between the local (linear) stability properties of 
simple periodic solutions of Hamiltonian systems, with the more 
“global” dynamics. Let us examine this question using the one-
dimensional lattice (or chain) of coupled oscillators called the 
Fermi Pasta Ulam β-model described by the N dof Hamiltonian 

(3)

where xj are the displacements of the particles from their 
equilibrium positions, and pj = dxj /dt are the momenta, β is a 
positive real constant and E is the total energy. 
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Let us focus on a some examples of simple periodic solutions

(SPOs), which have well-defined symmetries and are known in 
closed form, for example:

(I) the out of phase (pi-mode)

with N even, under periodic boundary conditions

(II) the SPO1 mode, where every 2 particles one is 
stationary and those on its either side move out of phase,

(III) the SPO2 mode, where every 3 particles one is 
stationary and the two on either side move out of phase

both under fixed boundary conditions (fbc) 

1
ˆ ˆ ˆ( ) ( ) ( ), 1,2,..,j jx t x t x t j N+= − = =

,



Figure 1 : Examples of SPOs that we have called the Out of Phase 

(or pi-)  Mode (above), the SPO1 orbit (middle) and the SPO2 orbit

(below).



Applying Lyapunov's Theorem  we can prove the existence of 
SPOs as continuations of the linear normal modes of the 
system, whose energies and frequencies are

(4)

Thus, our SPO1 and SPO2 orbits, as NNMs, are identified 
by the indices q = (N+1)/2 and q = 2(N+1)/3 respectively. 

An analytical criterion for “weak” chaos:

The above NNMs first destabilize at energy densities           

Ec/N ~ 1/N α, α=1,2, as N→∞.  

In agreement with an analytical criterion by Flach and co-
workers, Ec/N ~ π2/6βN2, we find that for α = 2 orbits (like 
SPO2)  instability implies “weak” chaos and the breakup of 
FPU recurrences. On the other hand, if  α = 1, for which 
the SPO1 mode destabilizes we find “stronger” chaos. 
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3.1 Lyapunov exponents and “strong” chaos

Chaotic behavior is usually studied by evaluating the spectrum 
of Lyapunov exponents, Li, i=1,….2N, (LEs) 
L1=Lmax>L2>….>L2N , defined as follows:

i=1,2,….,N      (5)

If Lmax > 0, the orbit is chaotic, while if Lmax = 0 the orbit 
is stable. In the thermodynamic limit, where E→∞ and N
→∞ (with E/N fixed), the Lyapunov spectrum near unstable 
NNMs tends to a smooth curve, see Figure 2(a). 

For our two orbits SPO1 and SPO2, at low energies when 
they are unstable, we find that their Lyapunov spectra are 
distinct see Figure 2(b,c). Raising the energy, the Lyapunov
spectra converge to the same exponentially decreasing 
function Li (N) ~ exp(-αi/N), ,i=1,2,…,N, thus providing 
evidence that the orbits explore the same chaotic region.
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Figure 2. (a) The spectrum of

Lyapunov exponents near an out of

phase orbit of the β – FPU  model

as E and N grow (E/N=3/4). In  (b) and (c)

the Lyapunov spectra of  solutions

starting near unstable SPO1and SPO2

orbits converge, as the energy grows

from E= 2.1 in (b) to E=2.6 for (c),

indicating that the chaotic regions about

these orbits have merged!



3.2 Beyond Lyapunov exponents: The Generalized 
Alignment Indices (GALI)

The GALI indicators: (a) detect the chaotic nature of the 
orbits more rapidly than other methods and, (b) identify 
quasiperiodic motion providing also the dimension of the torus. 

The GALIk, k = 2,…., N are defined, through the evolution of 
k initially linearly independent deviation vectors wi (0), as the 
volume of a k-parallelepiped given by the wedge product

whose k edges are the unitary deviations                        .

Thus, it is evident that if at least two of the deviation vectors 
become linearly dependent, the wedge product in (6) becomes 
zero and the GALIk vanishes. 

1 2
ˆ ˆ ˆ|| ( ) ( ) ( ) ||k kGALI w t w t w t=  

ˆ ( ) ( )/ || ( ) ||i i iw t w t w t=

,    i = 1,2,…,k       (6)



Behavior of GALI2 for chaotic motion

For chaotic orbits the two deviation
vectors tend to become linearly
dependent in the direction defined by
the maximal Lyapunov exponent.

ˆ
1

w (0)

ˆ (0)2w

ˆ (t)2w

P(0)

P(t)

GALI2 (0)

GALI2 (t)

We find analytically:

GALI2(t)~ exp[-(σ1 – σ2 )t]→0

σ1 > σ2 , being approximations 
of the two largest Lyapunov 
exponents L1 > L2 

ˆ
1

w (t)



18

Asymptotic analysis of the GALI2 for chaotic motion 

The evolution of a deviation vector can be approximated by :

ˆ ˆ ˆ i 1 2

2n
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1 i i 1 1 2 2

i=1

v (t) = c e e  c e e + c e e

where σ1>σ2>… are the Lyapunov exponents.

Thus, we derive a leading order estimate for v1(t) :
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P(t)

P(0)

Behavior of GALI2 for regular motion
On a torus of quasiperiodic motion the two deviation vectors
become tangent to the torus, since they are in general
linearly independent between them.

ˆ (0)2w
ˆ

1
w (0)

ˆ
1

w (t)

ˆ (t)2w

Hence for quasiperiodic motion, we find

GALI2(t) ≈ const. for all t > 0



We have shown analytically that, for a chaotic orbit, all 
deviation vectors tend to align in the direction of L1 , and all 
GALIk tend to zero exponentially following the law

,  t  →∞ (7)               

where Li are the k largest LEs. 

In the case of regular orbits lying on s-dimensional tori, all 
deviation vectors tend to fall on the tangent space of the torus. 
Thus, if we start with k ≤ s, the deviation vectors will remain 
linearly independent on the tangent space of the torus and the 
GALIk will be nearly constant, different from zero, for k ≤ s.

On the other hand, for k > s, all GALIk tend to zero as t  →∞

following power laws, since some deviation vectors will eventually 
become linearly dependent.

(8)
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Figure 3. The GALI indices for a Hamiltonian system of (a) 2 degrees of

freedom  and (b) 3 degrees of freedom. In case (a), since only GALI2 is

constant the motion lies on a 2-dimensional torus, while in (b), where

both GALI2 and GALI3 are constant, the torus is 3-dimensional.



4. LOCALIZATION IN 1-DIMENSIONAL LATTICES

4.1 Localization in Fourier space

In 1955, by E. Fermi, J. Pasta and S. Ulam (FPU) used the 
computers available at the Los Alamos National Laboratory to 
integrate a chain of 31 nonlinear oscillators, coupled to their 
nearest neighbors, and investigate how energy was shared by all 
normal modes of the system. 

To their great surprise, starting with initial conditions placed on 
the  q =1 linear normal mode, they discovered, for small energies, 
a near-recurrence to their initial state after relatively short times 
exciting very few other modes, see Figure 4 (a). 

This remarkable observation ran contrary to the expectation of 
energy sharing among all modes predicted by equilibrium statistical 
mechanics and was termed the “paradox” of FPU recurrences. 



Figure 4: (a) Localization in modal space in the form  of FPU recurrences, 

discovered by Fermi Pasta and Ulam, for a lattice of 31 particles. Note 

how only a packet of about 5 modes is excited before the energy returns 

to the q = 1 mode. 



Energy localization” here implies localization in Fourier q-modal 
space, as the FPU recurrences were observed when all the 
energy was placed in the q=1 mode!

Flach and his co-workers in 2005 introduced the concept of q-
breathers, as exact periodic solutions of the problem. They 
showed that if we excite a single low q-breather mode the total 
energy remains localized only within a few of these low frequency 
modes, also called metastable states or natural packets. 

A more complete interpretation of the FPU paradox was
provided by our group (Phys. Rev. E 81, 2010), where we 
introduced the concept of q-tori, reconciling q-breathers 
with the metastable packets of low-frequency modes.

Let us now use the GALI indices to study the stability of these
q – tori and the breakdown of the associated FPU recurrences!



Figure 5: FPU with 8 particles: (a) Only the E1 and E3 modes 
are excited. Observe that the associated q-torus is 2-
dimensional, since (b) only GALI2 =const. and all other GALIk

decay by power laws.



Figure 6: FPU with 8 particles and initial conditions near a q=2 
torus: (a) The evolution of GALI2 shows already at t ≈ 1000 
that the orbit diffuses away from the torus weakly chaotically. 
(b) This becomes visible in the oscillations much later, when the 
recurrences break down at t ≈ 14000.



4.1 Localization in configuration space

It is also important to mention the localization of nonlinear 
lattices in their spatial coordinates. These are exponentially 
localized periodic oscillations, called discrete breathers. They 
have been verified analytically and numerically on a variety of 
lattices, like the Klein-Gordon (KG) chain 

(9)

- ∞ < n < ∞ , where V(x) is an on-site potential and  α > 0 is a 
coupling parameter. Expanding in Fourier series, one finds that 
discrete breathers are directly related to homoclinic orbits of 
invertible maps, through which one can prescribe a numerical 
procedure for constructing them to arbitrarily high accuracy. 
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Figure 4(b) Localization in configuration  space in the form of a 
discrete breather of a harmonic nearest neighbor chain with on 
site nonlinear potential of the Klein Gordon type. 



Indeed, keeping only the leading term xn(t)=Ancos(ωbt) in such 
an expansion one obtains the map                                                        

(10)

which provides a very good approximation for the amplitudes An, 
as homoclinic orbits lying at the intersections of the invariant 
manifolds of the saddle point at the origin of (10), at |C|>2

Discrete breathers constitute one more example of what we call 
Simple Periodic Orbits, with all particles oscillating with 
frequency ωb outside the phonon band of NNMs.

Does it happen that discrete breathers, when they are stable, 
are surrounded by low-dimensional tori? If so, it would be 
interesting to study the dimensionality of these tori and their 
stability using our GALI indices to determine if these localized 
solutions will eventually break down as time evolves!
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Figure 7 (STABLE TORUS): (a) The oscillations of the central 
three particles of a KG chain of N=31 particles do not break 
down, forming a quasiperiodic breather. (b) The torus is 2-
dimensional, since only GALI2 remains constant, while all other 
GALIk decrease by power laws.



Figure 8 (UNSTABLE TORUS):(a) The oscillations of the central 3 
particles, starting further from the breather, appear quasiperiodic for 
very long times. (b) The solution, however, is chaotic and the “torus” 
eventually breaks down since the GALIs  decay exponentially.

Here we can predict the torus breakdown after t ≈ 1000 (right), while
it is observed after t ≈ 1400000 (left)! 



5.  COMPLEX STATISTICS OF CHAOTIC DYNAMICS

To study the statistical properties of chaotic behavior in 
Hamiltonian systems, we recall some basic facts of equilibrium 
thermodynamics. As is well-known, in Boltzmann - Gibbs 
statistics, if a system can be at any one of i=1,2,...,W states 
with probability pi , its entropy is given by the famous formula

,  under the  constraint                (11) 

where k is the Boltzmann's constant. The BG entropy satisfies 
the property of additivity, i.e. if A and B are two independent 
systems, their union entropy is SBG(A+B) = SBG(A)+SBG(B). At 
thermal equilibrium, and for a continuum set of states 
depending on one variable, x, the probability density that 
optimizes the BG entropy subject to the constraints (11), zero 
mean and variance V is, of course, the well-known Gaussian 

.                                                                
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Another important property of the BG entropy is that it is
extensive, i.e. that SBG/N is finite in the limit N→∞. But, many 
physically important systems governed by long range interactions 
are neither additive nor extensive, like self-gravitating systems of 
finitely many mass points and ferromagnetic spin models. For such 
systems the so-called Tsallis entropy has been proposed (1988)

,  under the constraint                    (13)

depending on an index q. For a continuum set of states x, the 
Tsallis entropy is optimized by the q-Gaussian pdf

(14)                         

where β=1/kT is a free parameter and a > 0 a normalization 
constant. Expression (14) tends to a Gaussian, as q → 1 eq →e. 
The Tsallis entropy is not additive, and, in general, non-extensive. 
It offers us the possibility of studying problems whose 
correlations decay by power laws (not exponentially).
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5.1 The case of multi-degree-of freedom Hamiltonian systems

There are many situations in such systems where the dynamics 
is weakly chaotic and may, therefore, possess Tsallis statistics
of the type described above. 

We found that, in the β-FPU model, near an unstable SPO1 
orbit of a 5-particle chain, orbits that remain “trapped” for 
very long times in a thin chaotic region (see Figures 9,10) are 
described by pdfs of the q-Gaussian type with q ≈ 2.8, see Fig. 
11(d).

These are what we call quasi-stationary states (QSS) of the 
dynamics. Following these states for long times, one typically 
finds that their pdfs pass through QSS described by q-
Gaussians of smaller q ≈ 2.48, see Fig. 11(e), until they finally 
converge to Gaussians with q = 1, when the orbits escape to a 
much larger domain of strong chaos, see Fig. 11(f).



Figure 9: Three different orbits with initial conditions very close to an

unstable SPO1 orbit of the 5 particle FPU-β chain: The black “figure

eight” in the middle starts from a distance of 10-7 , the green one 

around it starts within  0.0001 and the red one extending over a much 

larger region, starts within 0.01 from the  saddle point. 



Figure  10: Orbits starting at a 

distance of 1.0*10-7 from the 

unstable SPO1 orbit, integrated 

for: (a) t=105 (b) t=107      

(c) t=108  eventually escape in 

the large chaotic sea.

(a) (b)

(c)



Figure 11(d – f)  Plots of pdfs of position

variables for a 5- particle FPU chain and

initial conditions close to an unstable 

SPO1 orbit. The QSS observed here are

well described by q-Gaussians with

(d) q = 2.78, then (e) q = 2.48, until the

orbit drifts away to a wide chaotic sea

and the pdfs converge to (f) Gaussians

with q=1.05.

(d) (e)

(f)



5.2 Weak chaos in 2 – dimensional area – preserving maps

I have also studied chaotic orbits of a 2-dimensional area –
preserving  maps (modeling Hamiltonian systems of 2 – degrees 
of freedom) called the McMillan map

n = 0,1,2,3,….    (15)

near a saddle point at the origin (μ >1). Generally, the orbits 
wander around a chaotic domain and pass through a sequence of 
q-Gaussian states, with q > 1, until they become true 
Gaussians, with q = 1.

In some cases, however, when the chaotic domain extends 
around many islands where the orbits stick for long times, the 
pdfs appear to converge to a true q (>1)-Gaussian, for n →∞ , 
as shown in Figure 14.
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Figure 14 Left: Diffusive 

motion of orbits in a thin 

chaotic layer of a 2-d area –

preserving map, starting 

near the unstable fixed point 

at the origin, evolving to 

N=220 iterations. Below: The 

pdfs representing the 

normalized sum of the xn

coordinate of the map, 

converge to a q-Gaussian 

shown below, with q=1.6 



6. THE ROLE OF LONG RANGE INTERACTIONS

Let us now consider the case where our Hamiltonian 
involves Long Range Interactions (LRI) as follows:

4
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where b>0 and α ≥ 0. Note that to keep all energy 
terms in the Hamiltonian extensive, i.e. 
proportional to N, we have introduced before the 
quartic part of the potential the factor



Figure 15: LRI restores order out of chaos! For 0 < α < 1 
the maximal Lyapunov exponent λ starts to decay to zero as 
N increases and α “weaker” form of chaos is expected.



Figure 16: The momentum probability density function (pdf) for 
Long Range Interactions, α = 0.7, converges to a q-Gaussian with 
q=1.249 indicating a “weaker” form of chaos as time increases.



Figure 17: On the contrary, the pdf of the momenta for Short 
Range Interactions, α = 1.4, quickly converges to a pure 
Gaussian, indicating “strong” chaos for α > 1.



Figure 18: Note how the pdf index q decreases to 1 over the 
regime of Long Range Interactions, from α = 0 to just above α = 
1, where Short Range Interactions take over.



Figure 19a: Careful! Even for LRI, α= 0.7, the index q, starts to 
decrease towards 1 after a time threshold tc ≈ 106, for these 
parameter values.

Is that where Boltzmann and Gibbs are waiting for us?



Figure 19b: Momentum distributions for the system with b = 
10, ε = 9, α = 0.7 for increasing N values. Note that as N 
grows the pdfs are described by a q–Gaussian whose index q 
increases from 1.17 for N = 512 until 1.25 for N = 8192.

Now fix the integration time: Note that the momentum pdfs tend 
to q- Gaussians as the number of particles grow!



Figure 20: Very important: A “phase transition diagram” is thus 
obtained, separating BG from Tsallis thermostatistics, in which 
the limits t → ∞ and   N → ∞ do not commute!



Figure 21: Important 

observation: The index q 

depends linearly on 1/ \log N for 

N=4096, 8192, 16384, as α

changes, according the 

following formula:
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c
q N , q

log N
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Thus, we can use this formula to estimate the asymptotic 
behavior of q → q∞ in the limit N → ∞!



Important  Conclusion:

With LRI on the nonlinear forces, we find limiting values 

q∞ > 1 as N → ∞ , showing that the system remains 

weakly chaotic in the thermodynamic limit!

Figure 22: Variation of q∞ , as α changes.  As α→ 1, and beyond, 

one finds that q∞ → 1 and we return to BG thermostatistics.



6. CONCLUSIONS (What did we learn?)

Concerning Complex Dynamics of FPU 1-D Latiices:

1. We “described how important Nonlinear Normal Modes are in 
exploring “weak” and “strong” chaos, depending on the energy 
density Ec/N > 0 at which they first become unstable.

2. We mentioned the significance of Lyapunov spectra in 
quantifying strong chaos, and introduced the GALIk spectrum 
of indices k=2,3,4,…, best suited for identifying chaos, when 
they vanish exponentially and quasiperiodic motion, when they 
decay as power laws, whose powers yield the dimensionality of 
the torus. 

3. We used the GALI indices to study the breakdown of 
localization in 1-dimensional lattices: (i) In modal space 
connected to FPU recurrences and (ii) in position space, 
occurring in the form of discrete breathers.



Concerning Complex Statistics of FPU 1-D Lattices:

1. When Long Range Interactions are imposed (LRI) on the 
nonlinear forces (V4) – for any range of linear interactions– we 
obtain weakly chaotic motion characterized by q-Gausian pdfs 
with q>1 (Tsallis thermodynamics).

2. In the LRI case, we find a “phase transition diagram”, 
separating BG from Tsallis thermostatistics, in which the limits 
t → ∞ and N → ∞ do not commute!

3. When we introduce LRI only on the linear forces (V2) we obtain
strongly chaotic motion demonstrated by  pure Gausian pdfs with
q = 1 (Boltzmann Gibbs thermodynamics).

4. When LRI are imposed on the nonlinear forces, we find for long 
times limiting values q∞ > 1 as N → ∞ , showing that the system 
remains weakly chaotic (Tsallis and NOT Boltzmann Gibbs) in the 
thermodynamic limit!
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