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1. The Li – Sprott Oscillator: A Simple 4-D Lorenz like System

2. Coexistence of Limit Cycles and Strange Attractors

3. The formation of “perfect” and imperfect” chimeras

4. A simple analytical calculation of a limit cycle

5. Stable Steady States of Asymmetric Active Couplers

6. Stable Steady States of Semiconductor Lasers

7. Hopf Bifurcations and…. Chimera States in Laser Arrays?



1. The Li-Sprott Oscillator: A Simple 4-D Lorenz – like System

Let us consider the 4-D Li-Sprott nonlinear Oscillator:

first studied in Li C, Sprott JC, “Coexisting hidden attractors in a 

4-D simplified Lorenz system”, Int. J. Bifurc. Chaos, 2014, 24 

1450034, where a, b are fixed parameters.

This system has no fixed points and can remarkably support the 

coexistence of stable limit cycles and strange attractors!

ሶ𝒙 = 𝒚 − 𝐱

ሶ𝒚 = −𝐱𝐳 + 𝐮

ሶ𝒛 = 𝒙𝒚 − 𝐚 (1)

ሶ𝒖 = −𝒃𝒚
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Fig. 1. Limit cycle 
coexists with a 
symmetric pair of 
strange attractors at 
a = 7, b = 0.1 (green 
and blue attractors 
correspond to 
symmetric initial 
conditions and red
limit cycle occurs near 
the origin.

Fig. 2. What is 
particularly interesting 
are the intertwined 
basins of attraction of 
these solutions shown 
on the right
(blue for the limit 
cycle, green and red 
for the strange 
attractors.

Z

X

2. Coexistence of limit cycle and strange attractors



Let us now consider 100 of these oscillators on a ring of the form:

where each oscillator is coupled to P = 20 of its right and 20 of its 

left neighbors, obeying the equations of motion:

ሶx𝑖 = yi − xi +
𝐝

2P
σ
j= i−P mod𝑁
(i+P)mo𝑑𝑁

xj − xi

ሶy𝑖 = −xizi + ui
ሶz𝑖 = xiyi − 𝐚

ሶu𝑖 = −𝐛yi
where d is the coupling parameter, a = 7, b = 0.1.



Let us see what happens as the coupling parameter d is increased:

Fig. 3
(a) Asynchronous state 
of limit cycles at 
d=0.002, (b) a perfect 
one -headed chimera 
state at d=0.005, (c) a 
perfect 2-headed 
chimera with d=0.007, 
and (d) a perfect 4 –
headed  chimera with 
d=0.009, all for random 
initial conditions, x in 
[−15,15], z in [ −30,30] 
in the the x-z plane. 

3. Formation of perfect and imperfect chimeras



How did this happen?

Fig. 4. Select 1 
or more ”rebel” 
particles closer 
to the strange 
attractor:
(a) Imperfect 
synchronization 
with 1 “rebel”, 
(b) imperfect 
synchronization 
with 7 “rebels”, 
for d = 0.005. 
(c) imperfect 
chimera for 
d = 0.01. 



4. An analytical calculation for the central limit cycle 

Let us now attempt to obtain analytically an approximate form of our limit cycle 
by substituting in (1) the expressions:

where we have omitted all higher terms of the form sin(kωt), cos(kωt), k ≥ 3. 
We easily find the following results for the oscillation amplitudes:

From the last two equations we now derive the very important expression for the 
frequency of oscillations:

1 2 1 2

1 2 1 2
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We have tested the accuracy of these formulas against our numerical 
results and have found the results:

1) For the single oscillator: The frequency of the limit cycle is 1.6,
while our estimate gives ω = 1.36, and the amplitudes of x, y, z, 
u are 4.56, 9.01, 7.7 and 0.83, while the analytically computed 
values are 3.74, 6.32, 5.91 and 0.46 respectively. 

These are good order of magnitude estimates, but more importantly:

2) Our analytical frequency estimates approximately as well the

frequency of the synchronized state, at least for coupling constants   

d = 0.005 and d = 0.01. For example, when all particles have a 

frequency close to ω = 1.6 our analytical formula gives ω = 1.36 .

2

4

a
b = +
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Outline
➢ Background & Motivation

➢ The Asymmetric Active Coupler (AAC) of 2 Waveguides 

Stable Nonlinear Supermodes (NS), Modulational Stability         

and Directed Transport in coupled waveguides (Couplers)

➢ Coupled, Asymmetric Semiconductor Lasers (ASL) 

Stable Asymmetric Phase Locked States, Hopf Bifurcations 

and Exceptional Points in Photonic Dimers (“meta-molecules”)

➢ Asymmetry in Gain and Loss provides new experimental 

opportunities in Non – Hermitian Photonics

➢ Conclusions and Future Outlook



Active Coupler (PT - symmetric)

➢ The presence of gain and loss makes the dynamics of the system non-

Hermitian and in general non-integrable

➢ In the special case where the coupler is PT-symmetric, there exist two 

invariants of motion, rendering the system integrable, despite the fact 

that the total power S0 is not conserved

➢ The dynamics of the system is reciprocal with respect to the direction 

of light 

However: 

➢ No finite-power fixed points (Nonlinear Supermodes) exist! 

➢ Exceptional points arise only for Δ=0 detuning in the linear spectra 

where complex eigenvalues and eigenvectors collapse to lower 

dimension and can lead to  a 103 amplification of a preferred mode!



Background & Motivation

➢ The spatial periodicity of the gain/loss properties (imaginary part of              

the potential) goes beyond cases where only the refractive index  is    

modulated (real part of the potential). 

➢ Photonic structures are based on the engineering of the material 

properties in order to provide functionality required for photonic 

circuitry and integrated photonics.



The Asymmetric Active Coupler (AAC)

➢ The fundamental Active Coupler possesses non-reciprocal dynamics

and exhibits directed power transfer in the case of PT-symmetric 

gain-loss.

➢ PT - symmetry:

identical waveguides → refractive index is symmetric

→ gain in one = loss in the other 

➢ However, the PT - symmetric active coupler does not have finite 

power Nonlinear Supermodes!

lossgain



The Asymmetric Active Coupler (AAC)

( )

( )

2 21
1 1 1 1 2 1 2

2 22
2 2 2 1 2 2 1

dA κ
-i =(β +iα )A +γ | A | +σ | A | A + A

dz 2

dA κ
-i =(β +iα )A +γ σ | A | +| A | A + A

dz 2

The modal amplitudes of the two waveguides are governed by 

the Coupled Mode Equations:

j j

j

: complex propagation constant of the waveguide j

: loss (gain)

: linear coupling 

β +iα

α >0 (<0) 

κ >0

γ

coefficient

: nonlinear param,σ >0 

 

eters

Y. Kominis, T. Bountis and S. Flach, Scientific Reports 6: 
33699 (2016). 



Stokes variables

 

2 2 2 2
0 1 2 3

1 2 3

→the dynamics of the system is 3-dimensional, 

         described by the Stokes vector

S =S +S +S

S ≡ (S ,S ,S )

2 2
0 1 2

2 2
1 1 2

* *
2 1 2 1 2

* *
3 1 2 1 2

S =| A | +| A |

S =| A | - | A |

S = A A +A A

S = i(A A - A A )

It is convenient to introduce the Stokes Variables:

: deviation from power balance

0

1

: total power of the coS upler

S



Coupled Mode Equations 

0
0 1

1
0 1 3

2
2 1 3

3
3 1 2 1

dS
=-δS -αS

dz

dS
=-αS -δS +κS

dz

dS
=-δS -(β+χS )S

dz

dS
=-δS +(β+χS )S -κS

dz

Coupled Mode Equations:

1 2

1 2

1 2

α =α -α

δ=α +α  

β=β -β

χ = γ(1-σ)

➢ We consider cases where α1α2<0 (gain and loss) so that the sign of the 

parameter α=α1-α2 determines whether the first waveguide has loss 

and the second has gain (α>0) or vice versa (α<0) .

➢ The crucial parameters δ = α1+α2 and β = β1-β2 determine the excess 

gain/loss and the asymmetry that quantifies the deviation from the PT 

symmetry point at which δ = β = 0.

Parameters:



Existence of Nonlinear Supermodes

➢ We first note that there exists always a trivial zero fixed point O for 

which S1=S2=S3=0.

➢ The introduction of asymmetry allows for the existence of fixed 

points of the system which correspond to finite-power, constant-

intensity Nonlinear Supermodes (NS) of the AAC. 

➢ These supermodes represent optical fields that propagate 

unchanged along the coupler  despite the presence of gain, loss, 

asymmetry and nonlinear effects. 

➢ 0The utilization of the allows for 

visualization of the dynamics on 

F

a

 

 

normalized Stokes vector

Bloch Sphere of unit rad

= /  S S

ius.



Location of Nonlinear Supermodes

The location of the non-trivial NS on the Bloch sphere depends : 

• on Δ and Κ

• on whether Κ > 1 or K < 1

➢ All curves touch at their common points: 

➢ Two of the NS are symmetric with respect to the plane  F2=0

=(±1,0,0)F

( )

(0)
1

(0)
2

(0)
3

F =-Δ

K
F =m sinφ

2

K
F = 1-cosφ

2

Δ ≡ δ / α, K ≡ κ / α, X ≡ χ / α

( )φ 2 2 2
±

2 2 2
±

tan / 2 ≡| Δ / Λ |= (1-Δ ) / (K +Δ -1)

Λ =±Δ (K +Δ -1) / (1- Δ )



Existence and Stability of NS

The domains of existence of stable (s) and unstable (u) NS of the AAC in 

the  (Δ, B) parameter space for α =1 and X=1. (left) K=1.2, (right) K=0.8.

The zero fixed point Ο exists for all parameter values but it is stable only 

in the regions marked with O(s).

degree of geometric asymmetry

B 1 2 1 2=(β -β ) / (α -α )

degree of gain / loss asymmetry

Δ= 1 2 1 2(α +α ) / (α -α )

PT - symmetry implies Δ = B = 0

No NS in the blue 

regions

No NS 

No NS



Stable AAC Dynamics (α=1, X=1, K=0.8, Δ=0.7)

amplitude ratio :

2 2
1 2| A | / | A | =(1- ) / (1+ )=0.18Δ Δ

 Total Power : 0,+S =0.64

➢ Existence of a Stable Nonlinear 

Supermode implies:

➢ Directed Power Transport to a 

finite-power final state with 

desired total power and 

loss

gain

loss
gain

B=0.8



Far from P-T Symmetry (Δ1)

Amplitude Ratio :

2 2
1 2| A | / | A | =(1- Δ) / (1+Δ)=0.026

α=2, X=1, K=0.8, Δ=0.95, B=4

Initial conditions evolve to a final 

state where the total power is 

finite and located almost 

exclusively in the second 

waveguide.

➢ Even small excitation in the 

first waveguide directs all 

power to the stable NS with all 

power on the second 

waveguide.

➢ Existence of a Stable Nonlinear 

Supermode

loss
gain

loss
gain



Transversal Modulational Instability

( )

2
1,2 1,2

1,2 1,2 1,22

2 2
1,2 2,1 1,2 2,1

∂u ∂ u
i + +(β +iα )u +

∂z ∂x

κ
+γ |u | +σ |u | u + u =0

2

The electric field envelopes of the two waveguides are governed 

by Coupled Mode Equations of the Nonlinear Schrodinger type:

Y. Kominis, T. Bountis and S. Flach, Phys. Rev. A 95, 063832 (2017). 

i iu = A exp(ibz), i=1,2,

and  x  represents the transversal  direction

(see below)

where



AAC subject to Modulational Instability

2 2 21
1 2 1

β α(β-1)+κ / 2( α(α -1)cosφ 1
| A | = , | A | = | A |

γ(1-σ)(α -1) α

The constant amplitudes                                                  are those of the 

electric field envelopes of the NS discussed earlier:

2
* *1,2 1,2

1,2 1,2 1,2 1,2 1,2 2,1 2,12

∂ε ∂ ε
i + +F ε +H ε +M ε +Gε =0

∂z ∂x

1,2 1,2 1,2u =(A +ε )exp(ibz), i=1,2,

where α= - α2 /α1 > 0, β= β2 /β1 , b and the φ= φ1 – φ2 are 
defined through equations determined by the existence of 
stable NS. To study MI we now consider small perturbations

i i iA =| A | exp(iφ ), i=1,2,

and keeping only linear terms in the ε1,2 we obtain the 
system:



AAC subject to Modulational Instability

 
 
 
 
 
 
 

2
1 1

* 2 * * *
1 1

* 2
2 2

* * 2 *
2 2

ω -F -H -M -G

H ω +F G M
L=

-M -G ω -F -H

G M H ω +F

Consider now the behavior of Fourier modes of the form:                                                

* *
1,2 1,2 1,2ε =c expi(ωx- λz)+c exp(-i(ωx- λ z))

Clearly, instability occurs when there is an eigenvalue λ with a 
positive imaginary part. Thus, we search for stable cases, 
where λ has only negative imaginary part, Im(λ)=g < 0.

and solve the eigenvalue problem : Lψ = λψ , where:                                              



Modulational Instability

Fig. 1: Growth rate g =max( Imλi ) i=1,2,3,4 (g>0 for instability) for 
the case of self-focusing nonlinearity ( γ = 1 and σ = 0) for a gain-
loss imbalance corresponding to  α = 0.2 for the two Nonlinear 
Supermodes (a) and (b). Both NS are modulationally unstable.

Fig. 2: Modulation Instability of the NS under a random noise 
perturbation of order 10-2 superimposed at z = 0, for the 
cases of Fig. 1(a) with  β = 0.2 and Fig. 1(b) with β = 1

(a)

(b)(a)

(b)



Modulational Stability

Fig. 3: Growth rate g for a self-defocusing nonlinearity (γ = -1) and σ = 0
for a gain-loss imbalance corresponding to  α = 0.2 and an NS that is 
stable (g < 0 for all ω) for a range of parameter values.

Fig. 4: The NS are modulationally stable against perturbations (with ω = 
0) in the yellow area and modulationally stable with arbitrary ω in the 
blue area. (a)  corresponds to σ= 0 and (b) to σ= 0.5.

(a) (b)



Modulational Stability

Fig. 5: Wave evolution of periodic and localized perturbations 
superimposed on a modulationally stable Nonlinear Supermode. 
Parameter values as in Fig. 3(a), and  β = 1.8. In the second 
waveguide, a spatially periodic wave u = 0.5 cos(t) in panel (a) 
and a spatially localized wave u = 0.5sech(0.5t) in panel (b) have 
been superimposed on the stable NS at z = 0.

(a)
(b)



Coupled Semiconductor lasers

➢ Coupled semiconductor lasers are photonic structures with great 
potential for many applications in optical communications. A pair 
of coupled lasers is said to represent a “photonic molecule". 

➢ We investigate nonlinear, asymmetric coupled lasers with carrier 
density dynamics and study the existence and stability of 
asymmetric phase-locked modes . 

➢ We discover stable phase-locked modes with arbitrary power, 
amplitude ratio and phase difference, which for appropriate 
pumping and detuning bifurcate to stable limit cycles (Hopf
bifurcations). 

➢ We study the zero mode under asymmetry and discover lines in 
parameter space with exceptional points and other types of 
bifurcations, including laser termination at a stable zero state.



Coupled Asymmetric Semiconductor lasers: 

Phase locked states and Hopf Bifurcations

( )

( )

i
i i i+1 i-1 i i

2i
i = 1, 2, ...,Mi i i i

dΕ
=(1- iα)Ε Z +iη Ε +Ε +iωΕ

dt

dZ
T =P -Z - 1+2Z |Ε | ,

dt

The modal amplitudes of the two lasers and the carrier densities 

are governed by the Coupled Ordinary Differential Equations (*):

i i

: Linewidth enhancement factor : normalized coupling constant

:

α η

Νormalized excess pumping rates : normalized frequency det P ω uning

(*) Winful, H. and Wang, S., Appl. Phys. Lett. 53, 1894 (1988).

Y. Kominis, A. Bountis and V. Kovanis, Phys. Rev. A, 96, 043836 (2017)

The normalized excesscarrier densitiesi i: The electric fields ,Ε Z = 

where:



Coupled Semiconductor lasers:

Phase Locked States

Scaling our variables and writing Ei =Xi exp(θi ) we solve 

analytically our equations and obtain exact Phase Locked States:

1

1

2 2

2 ρ ρ ρ

−  
 
 

=

π
2 2

2
0 2 2

2 2
1 2 0 0

2 2
0 0

ΩΛsinθ(ρ -1) ρ -1
X = , θ=s +tan ,  s=0,1

ρ[(ρ -1)-4ΩΛρsinθ] α(ρ +1)

Z = Λρsinθ, Z =-Λcosθ / ρ, P = X +(1+2X )ΩΛρsinθ

P X -(1+2 X )ΩΛsinθ /

with θ = θ2 – θ1 , Χ0 = Χ1 and ρ = X2 / X1 ( here Δ = 0 ). 

First important result: Even in the case of symmetric 
lasers: P0 = P1  =  P2 and zero detuning Δ = Ω2 – Ω1 = 0, we 
find asymmetric stable solutions!



Asymmetric states for Identical Lasers Δ=0, P1=P2 

Fig. 6. Stable asymmetric phase-locked states in the (Λ,ρ ) 
parameter space of identical lasers (ΔP =P1 - P2 = 0). Blue and
yellow areas correspond to stability and instability, respectively. 
(a)  α = 5 and T = 400, (b) α = 1.5 and T = 400.

(a) (b)



Asymmetric Lasers  yield   Hopf bifurcations

Fig. 7. Existence and stability regions of phase-locked states of 
asymmetric lasers in (Λ,ΔP) space. Yellow areas correspond to 
instability. At the boundaries of the dark blue stable regions Hopf
bifurcations to stable limit cycles occur. The green area corresponds 
to nonexistence of a phase-locked state due to non-zero detuning. 
(a) Δ = 0, (b)  Δ = 0.05, (c) Δ = 0.1.

(a)

(c)

(b)



Stable and Unstable Phase Locked States

Fig. 8. Time evolution of the electric field amplitudes and phase differences. 
We start with asymmetric phase-locked states with θ = 0.9π and ρ =0.75 (a) 
to ρ = 0.05 (f), perturbed by random noise. Stable phase-locked states are in 
(a), (f). Unstable phase-locked states evolve either to stable limit cycles [(b), 
(c), (e)] or to chaotic states (d).

(d)(a)

(e)

(c)

(b)

(f)



The Zero State: A line of Exceptional Points 

We now examine the same system for α = 5, Τ = 400, P = 0.5 , and 

consider the zero state solution:  

Ei = 0 and Zi = Pi / Ω

Linearizing about this state, we obtain the eigenvalues:

 2
1,2

3,4

λ = Λ P+i(Ω-αP)± [ΔP+i(Δ-αΔP)] -1 ,

λ =-1/ 2P

i 1 2 1 2

1 2 1 2

P =(P +P ) / 2Λ, Ω=(Ω +Ω ) / 2Λ,

ΔP=(P -P ) / 2Λ, Δ=(Ω +Ω ) / 2Λ

where we define:

The line Δ – α ΔP = 0 in the parameter space generates important 
so – called Exceptional Points and generalizes PT-symmetric dimers, 
where spectral transitions occur only for zero detuning Δ = 0!

Y. Kominis, A. Bountis and V. Kovanis, Phys. Rev. A 96, 053837  (2017) 

Exceptional Points 
at Δ – α ΔΡ =0 !!



Coupled Semiconductor lasers: Exceptional Points

Fig. 9. Real (left) and imaginary (right) part of the normalized eigenvalues 
of the zero state for  α = 0, top panels, and α = 5 , bottom panels. 
Spectral transitions and exceptional points existence occur along the line  
Δ – α ΔP = 0. Thus, a non-zero α raises the restriction of zero detuning 
(Δ = 0), for the existence of exceptional points.



Coupled Semiconductor Lasers: Laser Termination

Fig. 10. Blue stability regions of the zero state in the (P1 , P2 ) 
parameter space for α = 0 (top panels), α = 5 (bottom panels) ,    
Δ = 0 (left) and Δ = 2 (right) detuning. The red dashed lines 
correspond to P1 = 0.5 (a) and P1 = 0.15 (d). Increasing P2 along the 
constant P1 lines leads to laser death at a stable zero state!

(a) (b)

(c) (d)



It is worth comparing these results with those obtained 

recently by other researchers [Z. Gao, M. T. Johnson and K. 

D. Choquette, arXiv:1801.0354, 2018] on P-T symmetric 

states.

We thus define a frequency detuning Δω, the gain contrast 

Δγ, and the net gain δ, as follows:







2 1

2 1

1 2

Δω α(Z -Z )-Δ= Λcosθ(ρ-1/ ρ)

Δγ Z -Z =-Λsinθ(ρ+1/ ρ)

δ Z +Z = Λsinθ(ρ-1/ ρ)

The PT-symmetric case corresponds to Δω = 0, ρ = 1 
and δ = 0, i.e. zero net gain. 

So let us see what new fruits we shall reap for our 
phase locked states in the case of asymmetry!



Fig. 12: Stability and location 
of Hopf Bifurcation and 
Exceptional Points in the Λ, ρ 
(above) and Λ, 𝑷𝟎 (below) for 
the case of zero frequency 
detuning (Δ = 0) and equal 
pumping (𝑷𝟏 = 𝑷𝟐 = 𝑷𝟎). 

Above: The Hopf Bifurcation 
Points are located at the 
boundary between stable (blue) 
and unstable (yellow) regions. 
Red lines depict the location of 
the Exceptional Points. 

Below: The line colormap 
depicts the asymmetry of the 
respective phase-locked states 
(blue and yellow color 
correspond to ρ=1 and ρ < 1.



Fig. 13: Stability and 
location of Hopf Bifurcation 
and Exceptional Points in 
the Λ, ρ (above) and (Λ, 
𝑷𝟏, 𝑷𝟐) (below) for the case 
of zero frequency detuning 
(Δ =0) and unequal equal 
pumping rates (𝑷𝟏 ≠ 𝑷𝟐). 

Above: The Hopf
Bifurcation Points are 
located at the boundary 
between stable (blue) and 
unstable (yellow) regions. 
Red lines depict the location 
of the Exceptional Points.

Below: The these are the   
s = 0 phase-locked states 
(blue and yellow color 
correspond to ρ = 1 and ρ < 
1, ρ >1. Results for the 
value of  𝑿𝟎=0. 0.01259.



Conclusions

➢ For the Asymmetric Active Coupler (AAC) we discovered

finite power Stable Nonlinear Supermodes, and new 

conditions for Modulational Stability and Directed Transport

➢ For Asymmetric Semiconductor Lasers (ASL) we obtained

Stable Asymmetric Phase Locked States, Hopf Bifurcations 

and Exceptional Points yielding new types of bifurcations

➢ Thus, asymmetric photonic elements provide new 

experimental opportunities in Non – Hermitian Photonics!

➢What new discoveries now await us?



➢ What are the properties of wave propagation in asymmetric photonic 

structures?

➢ What about connecting many such photonic elements in a lattice?

➢ What if we connect many Couplers of Optical Waveguides and excite 

2-3 of the central ones?  Stable localized states are found!

Future Outlook



ρ=0.45 ρ=0.30

PERIODIC MODULATION OF PUMPING RATES 
Pi  = P

(0)
i +(-1)

i+1(δP)sinωt     i=1,2

And if we increase asymmetry between the lasers, we find a 
big increase of the system’s relaxation oscillation frequency 

which, for increasing asymmetry  can reach 40 and more GHz! 



Coupling Stable Limit Cycles

Και δεν θα ήταν ενδιαφέρον, αν βάζαμε πολλούς λειζερς
συζευγμένους σε ένα δίκτυο, να εκτελούν μια από τις παραπάνω 
(α), (b), (c) ταλαντώσεις, να δούμε αν αυξάνοντας τη σύζευξη 
μεταξύ τους θα μπορούσαμε να έχουμε συγχρονισμό ή chimera 
states?

(b)(a)

(c)



Asymmetry reminds us of the poem
“The Road not Taken” by Robert Frost:

I will be saying this with a sigh,
Ages and ages hence,

Two roads diverged in the woods, and I,
I took the one less travelled by,

And that has made all the difference!
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