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Applications 
• Biology 
• Botany 
• Chemistry 
• Computer Science (Graphics, Vision, Image Processing and 

Synthesis) 
• Geology 
• Mathematics 
• Medicine 
• Physics 
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1. INTRODUCTION 
• A brief history 
• Classic fractals 
• Space-filling curves 

5 



Introduction 
• Many natural and artificial phenomena  

• have the very fundamental characteristic of 
invariance under different scales, 

• have infinite details at every point, 
• are self-similar across different scales and 
• can be described by a procedure that specifies a 
repeated operation for producing the details. 

• Fractal comes from the Latin adjective fractus, 
which has the same root as fraction and 
fragment and means “irregular or fragmented;” 
it is related to frangere, which means “to break.” 
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The beginning 
• Draw a line on a sheet of paper. 
• Euclidean geometry tells us that this is a figure of one 
dimension, namely the length. 

• Now extend the line. 
• Make it wind around and around, back and forth, without 
crossing itself, until it fills the entire sheet of paper. 

• Euclidean geometry says that this is still a line, a figure of 
one dimension. 

• But our intuition strongly tells us that if the line completely 
fills the entire plane, it must be two-dimensional. 
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Genesis 
• Such thinking started a revolution in mathematics about a 

hundred years ago. 
• Mathematicians such as Georg Cantor, Giuseppe Peano, 

David Hilbert, Felix Hausdorff, Helge von Koch and Wacław 
Sierpiński drew curves that were called “monsters”, “psychotic” 
and “pathological” by traditional mathematicians. 

• A new type of dimensioning was proposed, in which a curve 
could have a fractional dimension, not just an integer one. 
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Classic fractals 
• The Weierstrass function (1872). 
• The (triadic, middle-third) Cantor set (discovered in 1874 by Henry John 

Stephen Smith and introduced by German mathematician Georg Cantor in 
1883). 

• Plane (space) filling curves 
• The Peano curve (1890) 
• The Hilbert curve (1891) 

• The Koch curve (1904) 
• The Sierpiński gasket (1915) 
• The Sierpiński carpet (1916) 
• The Sierpiński tetrahedron 
• The Menger sponge (1926) 
• The Mandelbrot set 
• Spleenwort fern 
• Natural phenomena 

• Terrain, coastline, clouds, water, trees, feathers, fur 
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Weierstrass function (1872) 
• The Weierstrass function is 
an example of a 
pathological real-valued 
function on the real line. 

• The function has the 
property of being 
continuous everywhere but 
differentiable nowhere.  

• It is named after its 
discoverer Karl 
Weierstrass. 

 
 
 
 
 
 
 
 
 
Plot of Weierstrass function over the 
interval [−2, 2]. Like some fractals, the 
function exhibits self-similarity: every zoom 
(red circle) is similar to the global plot. 
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Cantor set (1883) 

• Initially, we consider the closed set c0 = [0, 1]. 
• Remove from c0 its middle third. What remains is the set c1 = 

[0, 1/3] ∪ [2/3, 1]. 
• Remove the middle third of [0, 1/3] and [2/3, 1]. 
• Continuing this ad infinitum, we get the Cantor set 

0
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n
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A brief history 
• In 1890, Giuseppe Peano discovered a densely self-

intersecting curve that passes through every point of the unit 
square.  

• His purpose was to construct a continuous mapping from the 
unit interval onto the unit square.  

• He was motivated by Georg Cantor’s earlier counterintuitive 
result that the infinite number of points in a unit interval is the 
same cardinality as the infinite number of points in any finite-
dimensional manifold, such as the unit square.  

• The problem Peano solved was whether such a mapping could 
be continuous; i.e., a curve that fills a space. 
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The Peano curve (1890) 
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The Hilbert curve in 2D 
• A continuous fractal 
space-filling curve first 
described by the German 
mathematician David 
Hilbert in 1891 as a 
variant of the space-
filling curves discovered 
by Giuseppe Peano in 
1890. 

• The first four iterations 
are shown on the right. 
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The Hilbert curve in 3D 

• The Hilbert curve as well 
as the Moore curve are 
two famous plane-filling 
curves that can be 
extended to 3D space-
filling curves. 

• A three-dimensional 
analog of the Hilbert 
curve is shown on the 
right. 
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Koch snowflake (1904) 

• The Koch curve can be constructed by starting with an equilateral 
triangle, then recursively altering each line segment as follows: 
• Divide the line segment into three segments of equal length. 
• Draw an equilateral triangle that has the middle segment from step 1 as 

its base and points outward. 
• Remove the line segment that is the base of the triangle from step 2. 

• After one iteration of this process, the result is a shape similar to 
the Star of David. 

• The Koch curve is the limit approached as the above steps are 
followed over and over again. 

 
 
 
 

The first five iterations of the Koch snowflake 
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Sierpiński gasket (1915) 

• Start with a solid (filled) equilateral triangle S(0).  
• Divide this into four smaller equilateral triangles using the 

midpoints of the three sides of the original triangle as the new 
vertices and remove the interior of the middle triangle to get S(1). 

• Repeat this procedure on each of the three remaining solid 
equilateral triangles to obtain S(2) and continuing we get 

1
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Sierpiński carpet (1916) 

• Begin with a square. 
• The square is cut into 9 congruent subsquares in a 3-by-3 

grid, and the central subsquare is removed. 
• The same procedure is then applied recursively to the 

remaining 8 subsquares, ad infinitum. 
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Sierpiński tetrahedron 

• The tetrix is the three-dimensional analogue of the Sierpiński 
triangle, formed by repeatedly shrinking a regular 
tetrahedron to one half its original height, putting together 
four copies of this tetrahedron with corners touching, and 
then repeating the process. 

• This can also be done with a square pyramid and five copies 
instead. 
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Menger sponge (1926) 

• Begin with a cube. (first image) 
• Divide every face of the cube into 9 squares, like a Rubik's 

Cube. This will subdivide the cube into 27 smaller cubes. 
• Remove the cube at the middle of every face and remove 

the cube in the center, leaving 20 cubes, resembling a Void 
Cube. (second image). This is a level-1 Menger sponge. 

• Repeat steps 1–3 for each of the remaining smaller cubes. 
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Strange attractors 

 
 
 
 
 
 
 
Visual representation of a 

strange attractor 

 
 
 
 
 
 
 

Lorenz attractor 
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Barnsley’s fern 

• It is a fractal named after 
the British mathematician 
Michael Barnsley who 
first described it in his 
book Fractals 
Everywhere. 

• He made it to resemble 
the Black Spleenwort, 
Asplenium adiantum-
nigrum. 
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The Mandelbrot set 
• The set of complex values c that do not diverge under the 

squaring transform p(z) = z2 + c beginning with z = 0. 
 

23 



Rendering of electrostatic potential 
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Landscapes 
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2. ON THE DIMENSION 
• General concept 
• Metric space 
• Self-similarity 
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The concept 
• The dimension of a space or object is informally defined as the 

minimum number of coordinates needed to specify each point 
within it. 

• A line has a dimension of one because only one coordinate is 
needed to specify a point on it. 

• A surface such as a plane or the surface of a cylinder or sphere 
has a dimension of two because two coordinates are needed to 
specify a point on it. 

• The inside of a cube, a cylinder or a sphere is three-
dimensional because three coordinates are needed to locate a 
point within these spaces. 

• As one would expect, the (topological) dimension is always a 
natural number. 
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Inductive dimension 
• Consider a discrete set of points (such as a finite collection of 

points) to be 0-dimensional.  
• By dragging a 0-dimensional object in some direction, one 

obtains a 1-dimensional object.  
• By dragging a 1-dimensional object in a new direction, one 

obtains a 2-dimensional object.  
• In general one obtains an (n + 1)-dimensional object by 

dragging an n-dimensional object in a new direction.  
• The inductive dimension of a topological space may refer to the 

small inductive dimension or the large inductive dimension, 
and is based on the analogy that (n + 1)-dimensional balls 
have n-dimensional boundaries, permitting an inductive 
definition based on the dimension of the boundaries of open 
sets. 
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Dimension 1 
• Consider a line segment. 
• Blow up the segment by a factor of two. The segment is now 

twice (21) as long as before. 
• Blowing up the segment by a factor of three, the segment is 

now three (31) times as long as before. 
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Dimension 2 
• Consider a square.  
• Blow up the square by a factor of two. The square is now 4 = 

22 times as large as before (i.e. 4 original squares can be 
placed on the original square).  

• Blowing up the square by a factor of three, the square is now 9 
= 32 times as large as before. 
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Dimension 3 
• Consider a cube.  
• Blow up the cube by a factor of two. The cube is now 8 = 23 

times as large as before (i.e. 8 original cubes can be placed on 
the original cube).  

• Blowing up the cube by a factor of three, the cube is now 27 = 
33 times as large as before. 

31 



Metric space 
A non-empty set V becomes a metric space when supplied with 
a mapping (metric) of the form ρ: V × V →  given by the 
formula (x, y)  ρ(x, y) which for each x, y, z ∈ V has the 
properties: 
(M1) ρ(x, y) ≥ 0, (non-negativity) 

and 
    ρ(x, y) = 0 ⇔ x = y (identity) 
(M2) ρ(x, y) = ρ(y, x) (symmetry) 
(M3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) (triangle inequality) 
The members of V are frequently called ‘points’ and the non-
negative, real number ρ(x, y) the ‘distance’ from the ‘point’ x to 
the ‘point’ y. 
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Examples 
• The set  of all real numbers with the usual metric ρ(x, y) = |x – y| for 

all x, y ∈  is a metric space, which is called a real line. 
• The most important space for us is the familiar n-dimensional 

Euclidean space n = {(x1, x2, …, xn) : xi ∈ , i = 1, 2, …, n} with the 
Pythagorean or root mean square error metric defined by 

𝜌𝜌2 𝑥𝑥,𝑦𝑦 = � 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

𝑖𝑖

 

 or with the Hippodamean metric  

𝜌𝜌1 𝑥𝑥,𝑦𝑦 = � 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑖𝑖

 

 where x = (x1, …, xn), y = (y1, …, yn) ∈ n, xi, yi ∈ , sometimes 
 called the box or city-block metric. 
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The locus 
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Pythagorean metric  
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Similarities 
• Two geometrical objects are called similar if one can be 

obtained from the other by uniformly scaling (enlarging or 
reducing), possibly with additional translation, rotation and 
reflection. 

• In geometry two triangles, △ABC and △A′B′C′, are similar if and 
only if corresponding angles have the same measure: this 
implies that they are similar if and only if the lengths of 
corresponding sides are proportional. 

• A mapping f: X → Y, where (X, ρ) and (Y, σ) are metric spaces 
is a similarity or similitude of ratio or scale r, if σ(f(x), f(y)) = r 
ρ(x, y) for every x, y ∈ X  and some fixed r ∈ +. 

• When r = 1 a similarity is called an isometry (rigid motion). 
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Self-similarity 
• A self-similar object is exactly or approximately similar to a part 

of itself (i.e. the whole has the same shape as one or more of 
the parts).  

• Many objects in the real world, such as coastlines, are 
statistically self-similar: parts of them show the same statistical 
properties at many scales. 

• Self-similarity is a typical property of fractals. 
• Scale invariance is an exact form of self-similarity where at any 

magnification there is a smaller piece of the object that is 
similar to the whole. 
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Koch curve 
• The single line segment 
in Step 0 is broken into 
four equal-length 
segments in Step 1.  

• This same “rule” is 
applied an infinite 
number of times resulting 
in a figure with an infinite 
perimeter. 

• The first five stages are 
shown on the right. 
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Randomly placed generator 
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Dimension 1.2619... 
• Consider a Koch curve, where each of the 4 new lines is 1/3 

the length of the old line. 
• Blowing up the Koch curve by a factor of 3 results in a curve 4 

times as large (one of the old curves can be placed on each of 
the 4 segments) 

• Therefore, 4 = 3d or 
ln 4 .
ln 3

d =
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Similarity dimension 
• A set F is called self-similar, if  

F = w1(F) ∪ w2(F) ∪  ∪ wi(F),  
 where wi are similitudes with common similarity ratio r and the 

sets wi(F) do not overlap. 
• For a self-similar shape F made of N copies of itself, each 

scaled by a similarity with contraction factor r, the similarity 
dimension is  

dim𝑠𝑠𝐹𝐹 =
log (𝑁𝑁)

log 1 𝑟𝑟⁄
. 
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Examples 
• Cantor set 
 N = 2, r = 1/3, dims = log 2/log 3 = 0,630929... 
• Koch snowflake 
 N = 4, r = 1/3, dimsK = log 4/log 3 = 1,261859507… 
• Sierpiński gasket 
 N = 3, r = 1/2, dimsS = log 3/log 2 = 1,584962500… 
• Sierpiński carpet 
 N = 8, r = 1/3, dimsC = log 8/log 3 = 1,892789260… 
• The Peano curve 
 N = 9, r = 1/3, dimsS = log 9/log 3 = 2 
• Sierpiński tetrahedron 
 N = 4, r = 1/2, dimsT = log 4/log 2 = 2 
• Menger sponge 
 N = 20, r = 1/3, dimsM = log 20/log 3 = 2,726833028… 
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Box-counting dimension 
• Let A be a set in a metric space. 
• For each ε > 0, let N(A, ε) denote the smallest number of closed 

balls of radius ε  > 0 needed to cover A.  
• If 

 
 

 exists, then D is the box-counting dimension of A. 








=
→ )ln(

)),(/1ln(lim
0 ε

ε
ε

AND
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Estimating the box-counting dimension of the 
coast of Great Britain 
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Hausdorff-Besicovitch dimension 
• Let X be a metric space. If S ⊂ X and d ∈ [0, +∞), the d-

dimensional Hausdorff content of S is defined by 
 
 

• In other words,      is the infimum of the set of numbers δ ≥ 0 
such that there is some (indexed) collection of balls {B(xi, ri) : i 
∈ I} covering S with ri > 0 for each i ∈ I which satisfies 
 
 

• The Hausdorff dimension of S is defined by 

( ) inf : there is a cover of  by balls with radii 0 .d d
H i i

i
C S r S r = > 

 
∑

( )d
HC S

.d
i

i I
r δ

∈

>∑

{ } { }dim ( ) sup 0 : ( ) inf 0 : ( ) 0 .d d
H H HS d C S d C S= ≥ = ∞ = ≥ =
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Examples 
• Let F be a flat disc of unit radius in 3.  
• From familiar properties of length, area and volume      = 

length (F) = ∞, 0 <      = (4/π) × area (F) = 4 < ∞ and      
 = (6/π) × vol(F) = 0.  

• Thus, dimH F = 2, with      = ∞ if d < 2 and      = 0 if d > 2. 
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Physical meaning 
• Amount of variation in the object details 
• A measure of roughness (fragmentation) of an object 
• The concept was introduced in 1918 by the 
mathematician Felix Hausdorff.  

• Many of the technical developments used to compute 
the Hausdorff dimension for highly irregular sets were 
obtained by Abram Samoilovitch Besicovitch. 
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What is a fractal? 
• A fractal is by definition a set whose Hausdorff-
Besicovitch dimension strictly exceeds its topological 
dimension. 

• Since the dimension 1.2619 is greater than the 
dimension 1 of the lines making up the Koch curve, 
the curve is a fractal. 
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3. ITERATED FUNCTION 
SYSTEMS 
• Preliminaries 
• Distances between sets 
• Transformations 
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The space where fractals live 
• Let (X, ρ) be a metric space. Then, (X) denotes the 
space whose points are the compact subsets of X, 
other than the empty set, i.e. 

(X) = {∅ ≠ A ⊂ X : A is compact}. 
• Sometimes (X) is referred to as the ‘space of 
fractals in X’ (but note that not all members of (X) 
are fractals). 

• The difference between a subset of (X) and a 
nonempty, compact subset of X is that (X) is a set of 
sets, so every subset of it is a set of compact sets. 
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Distance between a point and a set 

• The subset of real numbers {ρ(x, y) : y ∈ B}, where x ∈ X 
and B ∈ (X) has a smallest value.  

• Then, as the distance of the point x from the subset B we 
consider 

min{ρ(x, y) : y ∈ B}. 
 

 
 
 
 

     d(a, B) = ρ(a, b)                     d(a, B) = 0 

a 

B 

d(a, B) 

b a 

B 
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Distances between sets 

• Let A and B be two nonempty, compact subsets of a metric 
space (X, ρ). We define as 

dA(B) = max{d(x, A) : x ∈ B}  
 and 

dB(A) = max{d(x, B) : x ∈ A}. 
• The function dB(A) is usually called the directed Hausdorff 

distance from A to B. 

B 

dB(A) 

A 
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The Hausdorff metric 
• It measures how far two subsets of a metric space are 
from each other.  

• It turns the set of nonempty, compact subsets of a 
metric space into a metric space in its own right. 

• If 
h(A, B) = max{dA(B), dB(A)}, 

 then ((X), h) is a metric space. 

B 

h(A, B) 

A 
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Iterated function 
• In mathematics, an iterated function is a function which is 

composed with itself, possibly ad infinitum, in a process called 
iteration.  

• Iteration means the act of repeating a process with the aim of 
approaching a desired goal, target or result.  

• The formal definition of an iterated function on a set X follows. 
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Dynamic system 
• Define f k as the k-th iterate of f, where k is a non-negative 

integer, by f 0 = idX and f k + 1 = f  f k, where idX is the identity 
function on X and f  g denotes function composition. 

• Let S be a subset of n and let f: S → S be a continuous 
mapping. An iterative scheme {f k} is called a discrete dynamic 
system. 

• We are interested in the behaviour of the sequence of iterates, 
or orbits, {f k(x)} for various initial points x ∈ S, particularly for 
large k. 
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A fixed point theorem 
Let f : X → X be a continuous mapping, where 
(X, ρ) is a compact metric space. Then there 
exists a nonempty, closed set A ⊂ X such that  

f(A) = A. 
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Contraction mapping 
• Α contraction mapping, or contraction, on a metric 
space (X, ρ) is a function f from Χ to itself, with the 
property that there is a nonnegative real number s < 1 
such that for all x and y in X, 
 

• The smallest such value of s is called the Lipschitz 
constant of f.  

• Contractive maps are sometimes called Lipschitzian 
maps.  

• If the above condition is satisfied for s ≤ 1, then the 
mapping is said to be non-expansive. 

( ( ), ( )) ( , ).f x f y s x yρ ρ≤ ⋅
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Banach fixed point theorem 
• Also known as the contraction mapping theorem or 
contraction mapping principle. 

• Let (X, ρ) be a nonempty, complete metric space. Let 
T: X → X be a contraction mapping on X.  

• Then the map T admits one and only one fixed point 
x* in X (this means T(x*) = x*).  

• Furthermore, this fixed point can be found as follows: 
Start with an arbitrary element x0 in X and define an 
iterative sequence by xn = T(xn−1) for n = 1, 2, 3, … . 
This sequence converges and its limit is x*. 
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The attractor 
• We shall call a subset F of S an attractor for f if F is a closed 

set that is invariant under f (i.e. f(F) = F) such that the distance 
from f k(x) to F converges to zero as k tends to infinity for all x 
in an open set V containing F. 

• The set V is called the basin of attraction of F. 
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Iterated Function Systems (IFS’s) 
A (hyperbolic) Iterated Function System (IFS) on the 
metric space (n, ||⋅||) is defined as a pair {n; w1–Μ}, 
where 
 

{wi : n → n, i = 1, 2, …, M} 
 
is a finite set of contractions with contractivity factors 
si, i.e.  for every i = 1, 2, …, M 

 
||wi(x) – wi(y)|| ≤ si ||x – y|| ∀x, y ∈ n  

 
for some 0 ≤ si < 1. 
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Hutchinson operator 
• A collection of functions on an underlying space X. 
• Formally, let {n; w1–Μ} be an IFS, or a set of M 
contractions from a compact set X into itself. We may 
regard this as defining an operator H on the power set 
2X as  
 
 

 where A is any subset of X. 
• The iteration of these functions gives rise to the 
attractor of an iterated function system, for which the 
fixed set is self-similar. 

 

( )
1

: ,
M

i
i

H A w A
=




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The attractor of an IFS 
• The attractor of a (hyperbolic) IFS is the unique 
set 

 
 for every starting set A0, where 
 
 
 for all A∈(n). 
• The map H is also called the collage map to alert 
us to the fact that H(A) is formed as a union or 
‘collage’ of sets. 

( )0lim k

k
H A∞ →∞

=

( ) ( )
1

M

i
i

H A w A
=

=

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Affine transformations 
A transformation w is affine, if it may be represented by a matrix 
A and translation t as w(x) = Ax + t, or, if X = 2, 

 
 

 
whereas if X = 3 
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x a b x d
w

y c s y e
      

= +      
      

.
x a b c x l

w y d e g y m
z h k s z r

      
      = +      
      
      



Example 
Consider an IFS of the form {2; w1,w2,w3}, where 

1

1/ 2 0
0 1/ 2

x x
w

y y
      

=      
      

2

1/ 2 0 1/ 2
0 1/ 2 0

x x
w

y y
        

= +        
        

3

1/ 2 0 0
0 1/ 2 1/ 2

x x
w

y y
        
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Photocopy machine 1 
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Photocopy machine 2 
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Photocopy machine 3 
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Recurrent IFSs 
• An IFS with probabilities, written formally as {X; w1, w2, …, wM; 

p1, p2, …, pM} or, somewhat more briefly, as {X; w1–M; p1–M}, 
gives to each transformation in H a probability or weight.  

• If the weights of transformations differ, so do the measures on 
different parts of the attractor.  

• A non-self-similar attractor, however, is more easily 
represented with a recurrent iterated function system, or RIFS 
for short. 

• Each transformation has, instead of a single weight for the next 
iteration, a vector of weights for each transformation, {X; w1–M; 
pi,j ∈ [0, 1]; i, j = 1, 2, …, M}, so that the matrix of weights is a 
recurrent Markov operator for the Hutchinson operator’s 
transformation. 
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Complexity 
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The geometry of nature 



Classification 
• Self-similar fractals 

• Have parts that are scaled-down versions of the entire object 
• Can use different scaling factors for different parts 
• Statistically self-similar, if random variations are applied 
• Commonly used to model trees, shrubs, plants 

• Self-affine fractals  
• Have parts that are formed with different scaling parameters (sx, sy and 

sz) in different coordinate directions. 
• Statistically self-affine, if random variations are used 
• Commonly used to model terrain, water and clouds  

• Invariant fractal sets 
• Formed with nonlinear transformations 
• Self-squaring fractals,  e.g. the Mandelbrot set 
• Self-inverse fractals 
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4. FRACTAL INTERPOLATION 
• Introduction 
• Functions 
• Surfaces 
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Why interpolation functions? 
• Euclidean geometry and elementary functions 
are the basis of the traditional methods for 
analyzing experimental data 

• These functions can be expressed by simple 
mathematical formulas 

• They can be stored in small files and computed 
by fast algorithms 
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Why fractal? 

• Integral dimension 
• Suitable for the design of 
man-made objects 
(e.g. circles, squares) 

• Non-integral dimension 
• Suitable for the design of 
natural objects (e.g. 
clouds, mountain 
ranges) 

• Better fitting to 
experimental data (e.g. 
EEG, ECG, 
seismograph, image 
compression) 
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An example… 

A fractal interpolation function. 
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Interpolation functions in  
• Let the continuous function f be defined on a real closed interval I = 

[x0,xM] and with range the metric space (, |⋅|), where  

x0 < x1 < ··· < xM.  

 It is not assumed that these points are equidistant.  

• The function f is called an interpolation function corresponding to the 
generalised set of data  

{(xm, ym) ∈ K = I× : m = 0,1,…,M},  

 if f(xm) = ym for all m = 0,1,…,M and K = I×. 

• The points (xm, ym) ∈ 2 are called the interpolation points. We say that 
the function f interpolates the data and that (the graph of) f passes 
through the interpolation points. 
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Affine fractal interpolation 
Let us represent our, real valued, set of data points as 

{(un, vn) : n = 0, 1, …, N; un < un+1} 
and the interpolation points as 

{(xm, ym) : m = 0, 1, …, M; M ≤ N}, 

where un is the sampled index and vn the value of the given point in un.  
The affine fractal interpolation function (AFIF) is constructed with M affine 
mappings of the form 
 
 
where si ∈ (-1,1) is the (free) vertical scaling factor, whereas the coefficients αi, ci, 
di, ei arise from the constraints 
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IFS and interpolation functions 
• The IFS {2; w1–M} has a unique attractor, that 
is the graph of some continuous function which 
interpolates the data points. 

• This function is called a fractal interpolation 
function (FIF), because its graph usually has 
non-integral dimension. 
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1D fractal interpolation 

We map the entire (graph of the) function to each section of it. 
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Piecewise affine fractal interpolation 
A pair of data points, which are called addresses, is now 
associated with each wi 

 

The domain is now the pair of addresses. 

The constraints of the above mentioned case become 

 

 

subjected to 
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Constraints 
• For practical reasons suppose that the distance 
between the interpolation points along the 
horizontal and vertical direction is δ. 

• We mapped the entire (graph of the) function to 
each section of the function. Now we map domains 
of the function to sections of the function. Suppose 
that each domain has size Δ. 

• Points within a given interpolation section are not 
necessarily contained within any domain.  
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Interpolation functions in 2 
• Let the discrete data  

{(xi, yj, zij = z(xi, yj)) ∈ 3 : i = 0, 1, …, N; j = 0, 1, …, M} 
 be known. 
• Each affine mapping that comprises the hyperbolic IFS {3; w1–Ν, 1–Μ} is given by 

 
 
 

 with |snm| < 1 for every n = 1, 2, …, N and m = 1, 2,…, M. The condition 
 
 
 ensures that 
 
 
 
 is a similitude and the transformed surface does not vanish or flip over. 
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5. FRACTAL-BASED IMAGE 
ENCODING AND COMPRESSION 
• Introduction 
• Encoding 
• Decoding 
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Introduction 
• Fractal compression is a lossy image compression method 

using fractals. 
• It is best suited for textures and natural images, relying on the 

fact that parts of an image often resemble other parts of the 
same image.  

• It differs from pixel-based compression schemes such as 
JPEG, GIF and MPEG since no pixels are saved. 

• Special algorithms convert these parts into mathematical data 
called ‘fractal codes’ which are used to recreate the encoded 
image.  

• These codes can be decoded to fill any screen size without the 
loss of sharpness that occurs in conventional compression 
schemes. 
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What is Fractal Image Compression? 
• A set of contractive (affine) transformations 

can approximate a real image. 
• Instead of storing the whole image, it is 

enough to store the relevant parameters of 
the transformations reducing memory 
requirements and achieving high 
compression ratios. 
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Why is it Fractal Image Compression? 
• The decoder uses the same procedure for 
generating self-similar fractals 

• Achieved by approximating each segment of 
the image by applying a (contractive) 
transformation on some larger segments in the 
image. 
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Why is it Fractal Image Compression? 
• Standard image compression methods can be 
evaluated using their compression ratio 

• It takes advantage of across-scale 
redundancies presented in the images 
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FIC using IFS 

aided by 
•Wavelets 
•Genetic Algorithms 
•Fractal Interpolation Functions 
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Fractal Image Encoding and Compression 

• Based directly on the Collage Theorem 
• Based on the Fractal Transform 
• Based on Local (Partitioned) IFS 
• Based on RIFS or on FIF 
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The inverse problem 
• The fundamental principle of FIC consists of 
the representation of an image by an IFS of 
which the fixed point is ‘close’ to that image. 

• The encoding process is first to find an IFS and 
then a suitable transformation W whose fixed 
point is ‘close’ to the given image. 
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Concerns 

•How ‘close’ is the approximate to the real 
image? 

• Is the convergence ensured; 
  
 The {1/n} is a Cauchy sequence in the Euclidean subspace T = 

(0, 1] of , but it does not converge in T.  
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The Collage theorem 
If B ∈ ((n), h), where h is a metric, obeys 
 
then 

 
 

where s = max{si : i = 1, 2, …, M}. 
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s

ε
∞ ≤

−
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Interpretation 
• The closer the union is to the given set, the 
closer the attractor of the IFS will be to the 
given set. 

• To test the closeness of an attractor to a given 
set, one need not compute the attractor itself. 

• The theorem is not constructive, it does not 
indicate how to find a set of proper mappings. 
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Collage 
• In terms of wi, we have 

 
 
 

• This can be done by partitioning C into parts Ci, 
 

  
 such that each part Ci can be closely approximated by applying 
 a contractive affine transformation wi on the whole C, i.e., 

Ci = wi(C). 
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Fractal transform 
• A technique invented by Michael Barnsley et al. 
to perform lossy image compression. 

• This first practical fractal compression system 
for digital images resembles a vector 
quantization system using the image itself as 
the codebook. 
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Fractal transform compression 
• Start with a digital image A1.  
• Downsample it by a factor of 2 to produce 
image A2.  

• Now, for each block B1 of 4x4 pixels in A1, find 
the corresponding block B2 in A2 most similar to 
B1 and then find the grey-scale or RGB offset 
and gain from A2 to B2.  

• For each destination block, output the positions 
of the source blocks and the colour offsets and 
gains. 
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Fractal transform decompression 
Starting with an empty destination image A1, 
repeat the following algorithm several times:  
• Downsample A1 down by a factor of 2 to 
produce image A2. 

• Then copy blocks from A2 to A1 as directed by 
the compressed data, multiplying by the 
respective gains and adding the respective 
colour offsets. 
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Intuition 

• Real-world images, 
generally, do not 
contain parts that are 
affine transforms of 
the whole image. 

• Different parts of the 
image may become 
similar under certain 
affine transformation.  
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Partitioned (local) IFS 

Each range block is constructed by a transformed domain block. 
Range Domain 

w 4 
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w 14 

w 23 

w 31 
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Local IFS 
• IFS  

• Approximates each part of the image by a transformed version of the 
whole image 

• Local IFS  
• Approximates each part of the image by a transformed version of another 

part of the image 
• The image C is partitioned into range segments Ci, where 

 
• Then each range segment Ci is approximated by a transformed version of 

a bigger domain segment Di 
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Implementation issues 
• How to segment the image? 
• What kind of transformations to use? 
• How to find the parameters of the 
transformations? 

• Where to find the matching segments? 
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Encoding Images 
• Suppose we are given an image f we wish to encode. 
• We want to find w1, w2, …, wN such that f is the fixed 
point of W. 

• Partition f into N range blocks Ri.   
• Find the domain blocks Di and wi(⋅) that minimize the 
distance d(Ri, wi(Di)), i = 1, 2,…, N. 

• The best matching domain Di is said to cover the 
range Ri. 
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An illustrative example 
• Original image 128 × 128 pixels 
• Range blocks 4 × 4  1024 blocks (non-overlapping) 
• Domain blocks 8 × 8  121 × 121 
      = 14641 (overlapping) 

• Need to compare 14641 squares with each of the 
1024 range blocks 

• Since the size of domain block is 4 times the size of 
range block, we need to downsample. 
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The basic idea 

The image of Lena divided into 
domains of size 128×128 pixels. 

The image of Lena divided into 
regions of size 64×64 pixels. 
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An illustrative example 
wi include 
• translation and downsampling 

 
 
 

• adjust contrast a and brightness b 
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Encoding Images = Finding wi 
• Search for best spatial transformation 

 
 
 
 

 

 
 

One of the block mappings in a PIFS representation. 

• Search for best grey-scale transformation 

 a = {0, 0.2, 0.4, 0.6, 0.8}  
 b = mean (range1D) – a*mean(p); 
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Things you can do for extra credits 
• Add rotation and flip  

• Eight types of spatial transformations: 
• 1   ---> Rotate counterclockwise 0 degree.            
• 2   ---> Rotate counterclockwise 0 degree and flip.   
• 3   ---> Rotate counterclockwise 90 degree.           
• 4   ---> Rotate counterclockwise 90 degree and flip.  
• 5   ---> Rotate counterclockwise 180 degree.          
• 6   ---> Rotate counterclockwise 180 degree and flip. 
• 7   ---> Rotate counterclockwise 270 degree.          
• 8   ---> Rotate counterclockwise 270 degree and flip.  
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Things you can do for extra credits 
• Solve both a and b analytically 

• Minimize 
 

• By setting the partial derivatives to zero we have   

2
1
( )n

i ii
R a p b q

=
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Results 
• Left: Original  
• Right: After first iteration 
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Results 
• Left: After the second iteration 
• Right: After the tenth iteration 
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Partition schemes 
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Partition schemes 
• Motivation 

• Different regions should be covered by different sizes of 
range blocks. 

• Quadtree partitioning 
• Divide a square into 4 equally sized subsquares. 
• Repeat divisions recursively until the squares are small 

enough. 
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Partition schemes 
• Motivation  

• Use rectangular instead of square 
• HV-Partitioning 

• A rectangular image is recursively partitioned either 
horizontally or vertically to form two new rectangles. 

• More flexibility than Quadtrees 
• Can make the partitions share certain similar structures. 
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HV-Partitioning 
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Results using HV-Partitioning 
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Triangular partitioning 
• A rectangular image is divided diagonally into two 
triangles. 

• Each triangle is recursively subdivided into 4 triangles 
by joining 3 partitioning points on the sides of the 
original triangle. 
 
 
 

• More flexible: triangles can have self-similarities. 
• The artifacts do not run horizontally and vertically. 
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Ways to partition images 

A quadtree 
(5008 squares) 

An HV-partition 
(2910 rectangles) 

A triangular partition 
(2954 triangles) 

116 



Rectangular lattices 

Domains for fractal interpolating surfaces over rectangular lattices using 
RIFS on (a) triangular tiling, (b) rectangular tiling. 
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Rectangular tiling 
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Triangular tiling 
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Table 1 
Image size: 433×433×8 bits, JPEG compression ratio: 6,07 (56,78), JPEG 
SNR: 30,05 (13,32) dB 

Method (δ,Δ) Encoding time 
(sec) 

PSNR 
(dB) 

Compression 
ratio 

 
Self-affine 194 20,87 1,33:1 

Piecewise (4, 8) 0,1 42,8 1,35:1 

Piecewise (8, 16) 0,1 32,31 2,69:1 

Comparative results of the 1D methods 

where b is the largest possible value of the signal (typically 255) and rms 
is the root mean square difference between two images. 

1020 log bPSNR
rms

 =  
 
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Comparative results of the 2D methods 
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Fractal zoom 
• Resolution Independence 

• Decoded image can have higher resolution than the original 
image. 

• The additional resolution is generated because the 
domain block is larger than its range block. 

• Assumption: details of the domain block is also similar 
to details of the range block, 
• although details of the range block are not given in the 

original image. 
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Fractal zoom 
• Left: Decoding at 4 times its encoding size 
• Right: Original image enlarged to 4 times the size  
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Fractal zoom 
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Fractal zoom 
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Complexity 
• Fractal-based image encoding is asymmetric, i.e., encoding 

complexity is much higher than decoding complexity. 
• Encoding complexity is much higher than that of transform coding 

(e.g. JPEG) and vector quantization 
• Heuristics to speed encoding 

• Limiting Search 
• Limited number of transforms 
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Conclusions 
• Fractal image compression is also called as fractal image 

encoding because a compressed image is represented by 
contractive transformations and mathematical functions 
required for reconstructing the original image. 

• Fractal image compression enables an incredible amount of 
data to be stored in highly compressed data files.  

• An inherent feature of fractal compression is that images 
become resolution independent after being converted to fractal 
code.  

• This is because the iterated function systems in the 
compressed file scale indefinitely. This indefinite property, 
known as fractal scaling or fractal zooming, leaves no trace of 
the original pixel structure. 
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