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Waves 
  The study of waves can be traced back to antiquity where   
       philosophers, e.g., Pythagoras (560-480 BC), studied the   
       relation of pitch and length of string in musical instruments.  

   Waves are of broad interest – cf. prints by Japanese artist    

       Katsushika Hokusai (1760-1849). 

“Fast cargo boat battling waves” (1805) “The Great Wave of Kanagawa” (1831) 



Linear equations and useful notions 
 Consider a differentiable scalar function  u(x,t),  

    a partial differential operator L, and the PDE:  L[u] = 0  

    Let  u1  and  u2  two different solutions of the PDE;  

    the latter is said to be linear iff:  L[u1+u2] = L[u1] + L[u2] = 0  

 Dispersive wave equations: existence of plane waves:  

                       u(x,t) =exp(iθ),  θ = kx-ωt,    k, ω  R 

Temporal period: T=2π/ω. Spatial period (wavelength): λ=2π/k  

 Dispersion relation:  D(ω,k) = 0   or   ω = ω(k) 

 Phase velocity: vp = ω/k  - Group velocity: vg=ω/k ω(k) 

 If ω(k)  R and ω(k)  0: the PDE / wave: Dispersive  



Linear non-dispersive equations 

 Simplest linear 1st-order problem:  
    transport (advection) equation 

 Method of characteristics 
Reduce the problem to an ODE along  
some curve Γ: x=x(t) such that du/dt=0 

 

 

General solution:  

ω=ck  R, ω(k) = 0 
Non-dispersive system 



Solution of the transport equation 
The IC, F(x), is simply translated without changing shape 



The effect of dispersion 

 A simple dispersive model:  
    linearized KdV equation  

ω=-k3  R, ω(k) =-6k0 
Dispersive system 

Fourier transform method: 
    Use Fourier transform (FT) to  
    derive the ODE: Ut+ik3U=0; then,   
    solve the ODE, and find the inverse FT: 

 Superposition of elementary waves  exp[ikx-iω(k)t] 

 Different components propagate with different speeds 
 the wave profile changes shape and spreads out – disperse 
 Need for asymptotics for integrals…    



An example: decay of a pulse 

 Express the solution of the linearized KdV equation as:  

Airy function 

 Numerical solution for u0(x)=exp(-x2) 



 Method of characteristics: 
    Again,                   along the curves                     

    Alternatively:                           along 

 Simplest nonlinear 1st-order problem:  
    Hopf (inviscid Burgers) equation 

   “nonlinear transport equation”: here c  c(u) = u 

The effect of nonlinearity 

The solution ceases to exist (blows up) at finite time for f (ξ) < 0  

Breaking time  tB:  
t=tB 



Shock formation – hump-like initial data 



Shock formation: Art vs Nature 



Dispersion Nonlinearity 

Dispersion vs nonlinearity 

When dispersion  
and nonlinearity  

are  counterbalanced  

 solitons!  



What is a soliton? 

 Stable localized (solitary) waves propagating    

    undistorted in nonlinear dispersive media 



Soliton collisions 

 Solitons collide with other solitons without any  
   change in their shapes (particle properties!) 

Two-soliton collisions Three-soliton collisions 

 Soliton amplitude ~ soliton velocity  
 Larger solitons travel faster that smaller ones 



Soliton Equations 
Nonlinear Dispersive PDEs (infinite-dimensional dynamical systems) 

Ideally: Completely integrable (infinite number of integrals of motion) 

Examples 

Korteweg-deVries (KdV)   

     (shallow water waves, plasmas) 
 

 

Sine-Gordon (SG)  

     (field theory, Josephson junctions) 

  
 

Nonlinear Schrödinger (NLS) 

     (deep water waves, optics, BECs) 
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Solitons & periodic waves of the KdV 

  KdV equation: 

  Traveling waves:  

  Boundary conditions:                     as    

 Integrate once: 

 Multiply by Uζ  & integrate again: 

-V(ζ), 



Three different real roots, α, β, γ Τhe case of a double root α = β 

Forms of the inverted potential & solutions 

Limiting cases of cn(x,m): m0: cn(x,0)=cosx;    m1: cn(x,1)=sechx  

 Periodic solutions:  

     cnoidal waves 

  Special case:   
     β α   m1   

         soliton 



Cnoidal waves & solitons 

Water waves: the KdV equation 
approximately describes the wave 
elevation η=η(x,t) above mean height h 

η(x,t)=η0+h cn2[2K(m)(x-ct/λ), m] 

cnoidal wave 



Physical periodic waves and KdV solitons 



Soliton interactions in shallow water 



Generalization of KdV in 2D:  

Kadomtsev - Petviashvilli (KP) equation  

M. J. Ablowitz and D. E. Baldwin, PRE 2012  

Soliton interactions – the KP model 



… and still another beautiful example!   



 Localized (solitary) waves and solitons arise in:  

 Water waves, nonlinear optics, Bose-Einstein condensation (BEC), 
metamaterials, plasmas, solid-state physics, field theory, elasticity, 
magnetics, biological dynamics, complex systems, acoustics...  

Localized waves and solitons: 
can we see them? 

 So, the answer is yes! We can observe – and also exploit them! 

Solitons can be used to understand energy localization and 
the emergence of robust coherent structures in nature 

 In many physically relevant cases, such nonlinear waves are 
    very robust (mathematically speaking: stable - persistent) 



Internal ocean waves 

Surface waves of height 
6–8 ft in groups of 4–8 
every 12 hr 26 min 
 
Waves are on the order 
of 120 miles in length 
 
The ripples/internal 
waves persist for 250 
miles, or over 2 days. 

Internal ocean waves appear  
to be close to KdV solitons! 



 Long, roll-shaped clouds; sometimes can exceed length of   
    1000 km and can move at up to 70 km/h! 

Morning Glory 

 Morning Glory of the Gulf of Carpentaria in Northern    
     Australia arrives regularly each spring  



Morning Glory video 



Great red spot of Jupiter 
  Biggest storm in the solar system  stable localized wave:  

      it has been discovered on 1664 and it is still there! 
 

  It is about 28,000 km long and 14,000 km wide:  
     the “spot” is larger than the earth, more than 2 times as large! 



 Solitary waves/solitons of the type we discuss first   
    discovered in water waves – historical timeline follows 
 

Some history 

    1757 – Fundamental equations of (inviscid) fluids:  
     Leonard Euler (Swiss) 
 
 Euler was blind for last 20 years of his life 

 
  He wrote almost 900 papers/books –  
     many when he had little or no vision!  
 
  He is known for many contributions in  
     Mathematics and Physics 

Leonard Euler  



Some history - continued 
1776, 1781 – Water waves – small amplitude shallow water 
                     – linear wave equation 

Pierre Laplace (French) - Laplace equation   

Joseph Lagrange (French) - founded Ecole Polytechnique 

Pierre Laplace  Joseph Lagrange  



Some history - continued 
  1813 - French Academy of Sciences announced prize    
  competition - propagation of water waves 

  1816 - Augustin Cauchy (French) awarded the prize: 
  linear equation (initial value problem); Simeon Poisson (French),   
  a judge of the committee, also submitted an important paper  

  Cauchy's work was eventually published in 1827; (Poisson’s work    
  published earlier); closely related to work by Jean Fourier (French)  

Augustin Cauchy  Simeon Poisson  Jean Fourier  



Some history - continued 
1837- British Association for the Advancement of Science (BAAS)  
sets up a “Committee on Waves”;  
one of two members was John Scott Russell (1808-1882; Scottish 
Naval Scientist). Russell was interested in the efficient design of boats.  
 
1837, 1840, 1844 
Russell's major effort:  
“Report on Waves” to the BAAS  
-describes a remarkable discovery: 
The Wave of Translation * 

John Scott Russell  

* "Report on Waves":  Report of the fourteenth   

     meeting of the British Association for the   
     Advancement of Science, York, September   
     1844 (London 1845), pp 311-390, Plates XLVII-LVII. 



Russell’s “Wave of Translation”  

“I was observing the motion of a boat drawn along a narrow channel 
by a pair of horses, when the boat suddenly stopped - not so the mass 
of water in the channel. It accumulated round the prow of the vessel 
in a state of violent agitation, then suddenly ... it rolled forward with 
great velocity, assuming the form of a large solitary elevation, a 
rounded, smooth and well-defined heap of water, which continued its 
course along the channel apparently without change of form or 
diminution of speed.  
 
I followed it on horseback, and overtook it still rolling on at a rate of 
some eight or nine miles an hour, preserving its original figure ... a 
foot to a foot and a half in height. Its height gradually diminished, and 
after a chase of one or two miles I lost it in the windings of the 
channel. Such, in the month of August 1834, was my first chance 
interview with that singular and beautiful phenomenon...” 



“Wave of Translation”: 1834-today  

John Scott Russell’s report: experiments  

Schematic representation by Chris Eilbeck A soliton in a water tank (Bourgogne, France)  

1995, Union Canal, Heriot-Watt University 



Russell to mathematicians: “... it was not to be supposed that 
after its existence had been discovered and phenomena 
determined, endeavors would not be made to reconcile it with 
existing theory, or to show how it ought to have been predicted 
from the known equations of fluid motion. In other words, it now 
remained for the mathematician to predict the discovery after it 
had happened...''  

 
Leading British fluid dynamics researchers  

     doubted the importance of Russell's  
     solitary wave  
 
  Sir George Airy (English) 1841:  
     Russel’s wave was linear 

Some history - continued 

Sir George Airy 



1847 – Sir George Stokes (Irish): Stokes set up the correct 
nonlinear water wave equations and found a traveling periodic 
wave to these equations, where the speed depends on 
amplitude.  
 
 Stokes made many other critical  
 contributions to fluid dynamics:  
     “Navier-Stokes equations” 

Some history - continued 

Sir George Stokes  Claude-Louis Navier (French)  



Some history - continued 
1871-1877 - Joseph Boussinesq (French): new nonlinear equations 
and solitary wave solution for shallow water waves  
 
1895 - Diederick Korteweg and Gustav de Vries (both Dutch): 
simplified shallow water wave equation (“KdV equation”);  
nonlinear periodic solution: “cnoidal” wave; special case being the 
solitary wave solution. Russell's work was (finally) confirmed! 

Joseph Boussinesq  Diederick Korteweg  Gustav de Vries  



From water waves to nonlinear  
lattices: Fermi-Pasta-Ulam (FPU) 

In 1955, Fermi, Pasta, Ulam (FPU) and Tsingou undertook a numerical study 
(Los Alamos) of a one-dimensional anharmonic (nonlinear) lattice.  

They thought that due to the nonlinear coupling, any smooth initial state 
would eventually lead to an equipartition of energy, i.e., a smooth state 
would eventually lead to a state whose harmonics would have equal 
energies. 

In fact, they did not see this in their calculations. What they found is that 
the solution nearly recurred and the energy remained in the lower modes! 

Stanislaw Ulam John Pasta Enrico Fermi Mary Tsingou 



The FPU model 

The FPU model consists of a nonlinear spring–mass system with the 
force law: F(Δ)=−k(Δ+αΔ2); here, Δ is the displacement between 
the masses, k > 0 is constant, and α is the nonlinear coefficient. 
Using Newton’s 2nd law, one obtains the following equation 
governing the longitudinal displacements: 



The work of Zabusky and Kruskal 
In 1965, Zabusky and Kruskal studied the continuum limit corresponding to the FPU 
model: They considered y as approximated by a continuous function of the position 
and time and expanded y in a Taylor series, 

Normalizations: 

Norman Zabusky Martin Kruskal 



Zabusky and Kruskal - continued 

  Continuous limit, to leading order: 

 Derived by Boussinesq (1871-1872) for shallow-water waves! 

 Four interesting cases: 

 No dispersion, no nonlinearity: 

 Dispersion, no nonlinearity: 

 No dispersion, nonlinearity: 

 Dispersion, nonlinearity: balance                                      SOLITONS! 

dispersion  nonlinearity 



From Boussinesq to KdV  

Boussinesq equation Solution of the form 

Let                   , drop           terms, and define:   

KdV equation! 

A note:   Before early 1960’s, KdV was not of wide interest; 
                  waves were chiefly studied by means of linear, 2nd-order  
                  equations, while KdV is nonlinear and 3d-order equation! 



KdV solitons and the FPU “paradox” 
 Zabusky & Kruskal: 

  When δ2 << 1, a sharp gradient appears at a finite time, t = tB, together with “wiggles”.  
 
  When t>>tB, the solution develops many oscillations that eventually separate into a 
     train of solitary-type waves. Each solitary wave is localized in space.  
 
 Subsequently, under further propagation, the solitary waves interact and the solution 

eventually returns to a state that is similar to the initial conditions, one which 
resembles the recurrence phenomenon observed by FPU in their computations! 



The seminal paper 

A note: the term “soliton”, originating from “solit-ary”  
      and “on” (usually used for particles), was first  
      introduced in the paper of Zabusky and Kruskal 



Solitons – anything else? 



Spatial solitons in bulk media and waveguides  2
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Solitons in nonlinear optics: 
the nonlinear Schrödinger (NLS) equation 

Temporal solitons in optical fibers 
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Solitons of the cubic NLS model 

NLS: Completely integrable – exact soliton solutions 

Focusing (sσ = -1) and defocusing (sσ = +1) NLS  

 

 

sσ = -1 :  Bright Solitons  

  

 

sσ = +1 : Dark Solitons 
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Types of solitons of the NLS equation 

Bright solitons Dark solitons 

density 

phase 

black gray 

μ μ 

Bright solitons: Nontopological solitons 
Dark solitons: Topological solitons (phase kinks) 

x                           x                          x 

tanh2 sech2 



Bright and Dark Solitons 
Another interpretation: 

Different animals in the jungle 
of nonlinear waves! 

sech2 tanh2 



Temporal solitons in optical fibers 

Optical fibers 

 Consist of: special form of silica 
glass. 

 Size: no thicker than a human hair. 

 Cost: 20 euros per kilometer. 

 Its job: is to guide the light (which 
carries the information) with 
minimum attenuation or loss 

 
Optical fibers are dispersive 
nonlinear media  solitons! 
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A long optical fiber link with solitons! 

Length: ~ 3000 km 
WDM: 160 channels x 10 Gbit/s 
Amplifier spacing: 90 km 



Optical spatial solitons 
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Dark solitons   
 Non-diffracting “shadows”  

Self-defocusing: 

Bright solitons   
 Non-diffracting optical beams  

Self-focusing: 



The quantum world: Bose-Einstein condensates  
 Bose-Einstein condensate (BEC): A state of matter in   
   which a “macroscopic” number of particles (103 - 104)  
   obeying the Bose-Einstein statistics (bosons) share the 
   same quantum state of lowest-energy (for T << Tc   100nK) 

 Original theoretical prediction: Bose - Einstein (1925) 

N 

0N

 Experimental observation: Cornell-Wieman-Ketterle-Hulet (1995)  
    in dilute alkali gases (87Rb, 23Na and 7Li) - Nobel prize in Physics (2001) 

   Βose-Εinstein condensate is:  
 
  Τhe coldest matter in the  
      Universe (0.5 < Τ < 100 nK) 
 
  A “macroscopic” quantum   
     system (R ~ 50 μm, L ~ 300 μm) 

 
 



BECs in the mean-field picture (T0) 

 Gross-Pitaevskii equation (GPE) : Nonlinear Schrödinger equation 

m
g

 24 














 22
2

)(
2

grV
mt

i




External trapping potential 
Interatomic interaction term  

g > 0: repulsive BEC 
  g < 0: attractive  BEC 

Kinetic energy term 
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BEC is a coherent matter-wave  
similar to laser:  

 

  Atoms in a BEC behave the same way   
     similarly to photons in a laser beam 

 

  Independent BECs interfere like laser   
    beams (MIT group, Science 1997) 

 BEC wavefunction             : product of N single-particle wavefunctions ),( tr






Rice group, Nature 2002 

ENS group, Science 2002 

Bright solitons in attractive BECs 



Dark solitons in repulsive BECs 

Experiment 

Theory - GPE model 

Theory - experimental conditions 

one soliton 

two solitons 

Dark solitons in BECs have been 
made to live long enough (up to 1-2 
seconds!) for their dynamical 
properties to be observed. They may 
serve as a sensitive probe of the 
properties of quantum systems! 



Solitons: can we hear them? 
The sound of solitons 

Experimental setup 

    In acoustics:  
 Typical nonlinear waves: shock waves 
 

 Shock waves emerge in air-filled tubes (as,  
     e.g., in train tunnels –  TGV net in France) 
 

 Can we eliminate formation of shocks by adding “inclusions” in the tube? 

Observations 



Modeling and results 

Boussinesq (!) 

KdV (!) 

Theory Experiment 



Solitons inside us (!) 
 Blood-pressure waves 

  Heart sends a pressure wave in the arteries, inducing a local   
     expansion of the vessel. 
 The deformation in the elastic vessel tube is felt as the pulse 

 
 Question: why is it possible to feel the blood pulse at the wrist? 
  
 
 
 
 
 
  Answer: because blood pressure waves are described by   
                     KdV solitons, which are quite robust, and propagate  
                     without distortion in arteries!  



Modeling and results 
•  Assumptions:  
 blood is an incompressible and inviscid fluid 
 the artery is an infinitely long circular elastic cylinder 
 the flow is 1D (localized pressure increase causes radially   
     symmetric expansion) 

• Analysis:  

cross section of the artery  

velocity  pressure  

KdV equation! 

Pressure pulse: 

Smoking  arteries become more rigid   E increases   blood pressure and speed increases 
Fat accumulation   thickness of artery wall h increases   pulse width & blood pressure increase 



Solitons localized in both space & time: 
Rogue / freak / extreme waves  

Giant waves that appear from nowhere  
and disappear without a trace! 



 According to seafarer and fishermen 
stories (here from a pub in Ireland), 
rogue waves like solid walls of water, 
higher than 30 meters, or holes in the 
sea, are more or less common 
phenomena in deep ocean waters.  

Reports on extreme wave events 

  Anything more reliable? 

 Data from satellites and oil platforms! 

o The “New Year Wave”, 26m height  in the North Sea  

o  Recorded at Draupner platform, Norway, January 1st, 1995 



Usual forms of rogue waves in the sea 



Statistics of collisions with rogue waves 



Other manifestations of rogue waves 
Rogue waves also have been found in: 
 

 Nonlinear optics (exp) 
 Mode-locked lasers (exp) 
 Superfluid helium (exp) 
 Hydrodynamics (exp) 
 Faraday surface ripples (exp) 
 Parametrically driven  
      capillary waves (exp) 
 Plasmas (exp) 

 
 BECs (th) 
 Econophysics (th)  
 … 

 
Genuinely interdisciplinary research topic! 



The Peregrine soliton of the NLS 

NLS equation  

Deep water waves 

  Nonlinear optics   

Peregrine soliton: localized both in space AND in time 



 Solitons are extraordinary waves:  

  they propagate undistorted in nonlinear dispersive media and feature 
particle-like properties (they undergo elastic collisions) 
 

 Historical discussion: 

 from Euler to J. Scott Russell and his “great wave of translation”, and 

 from water waves to nonlinear lattices and the FPU paradox, and beyond 
 

 Solitons are around us - and even inside us (!) :  

     there are many cases/situations where solitons can be observed;  

     they appear ubiquitously in all branches of physics and in all scales 

     they can be used to understand the emergence of coherent robust    

       structures in nature 

 they can be used in applications (e.g., optical fiber communications) 

Conclusions 



Thank you!  
 

A lot of things have been understood…  
and many more remain to be done… 

…so, let’s keep on rolling stones! 


