The role of chaos in barred spiral galaxies

Mirella Harsoula

Research Center for Astronomy and Applied Mathematics
Academy of Athens

Stable and unstable manifolds

- Celestial Mechanics:
- Important in space missions: natural channels of motions for spacecrafts that can save fuel! ("Space Manifold Dynamics" Ferraz-Mello 2010)
- First mission in 1978 was the International Sun-Earth Explorer 3 (ISEE3), orbited the Sun-Earth L1
- Genesis project was the first to plan an entire mission using manifolds to connect the L1 Halo orbits with the L2 point and Earth for a low-energy round-trip flight.
- Dynamical Astronomy:

The "manifold theory": chaotic orbits support the spiral structure in barred-spiral galaxies (Voglis et al. 2006, Romero-Gomez et al. 2006)

Order and Chaos in Dynamical Systems

$$x' = x + y'$$

$$y' = y + \frac{k}{2\pi} \sin(2\pi x) \pmod{1}$$

Standard map

STICKINESS IN CHAOS

G. CONTOPOULOS and M. HARSOULA
Research Center for Astronomy, Academy of Athens,
Soranou Efesiou 4, 11527 Athens, Greece

Analytical Moser Invariant curves

"The analytic invariants of an Area-Preserving Mapping Near a Hyperbolic Fixed Point Jurgen Moser" (1956)

"In this paper we want to determine the analytic invariants of area preserving mappings

in the neighborhood of a fixed point"

1958-> Hamiltonians

Da Silva Ritter et al (1987), Giorgilli (2001), Bongini et al. (2001)

- The invariant manifolds can be represented by convergent formal series in mappings and in Hamiltonian models C. Efthymiopoulos, G. Contopoulos, and M. Katsanikas, 2014, Celestial Mechanics and Dynamical Astronomy
- Analytical description of the structure of chaos. M. Harsoula G. Contopoulos, and C. Efthymiopoulos, 2015, Journal of Physics A
- Convergence regions of the Moser normal forms and the structure of chaos G. Contopoulos, and M. Harsoula, 2015, Journal of Physics A

Moser invariant curves in mappings

Hénon symplectic map (Hénon 1969)

$$x' = \cosh(\kappa)x + \sinh(\kappa)y - \frac{\sqrt{2}}{2}\sinh(\kappa)x^{2}$$
$$y' = \sinh(\kappa)x + \cosh(\kappa)y - \frac{\sqrt{2}}{2}\cosh(\kappa)x^{2}$$

$$\Phi = (\Phi_1, \Phi_2)$$
 of the form $x = (u+v)/\sqrt{2}$, y

$$u = \Phi_1(\xi, \eta) = \xi + \Phi_{1,2}(\xi, \eta) + \dots$$
$$v = \Phi_2(\xi, \eta) = \eta + \Phi_{2,2}(\xi, \eta) + \dots$$

$$\Lambda(c) = \lambda_1 + w_2 c + w_3 c^2 + \dots$$
$$\frac{1}{\Lambda(c)} = \lambda_2 + v_2 c + v_3 c^2 + \dots$$

$$\xi' = \Lambda(c)\xi$$

$$\eta' = \frac{1}{\Lambda(c)}\eta$$

The road of chaos

Moser domain of convergence

Application in Barred-Spiral galaxies

Normal spiral galaxies

Density waves

Lindblad 1956 και Lin and Shu 1964

NGC628 NGC5247

Ποιος μηχανισμός δημιουργεί τις σπείρες;

Στέρεο σώμα

Διαφορική περιστροφή

Κύμα πυκνότητας

Lindblad 1956 και Lin and Shu 1964

Application in Barred-Spiral galaxies

Application in Barred-Spiral galaxies

PL1 and PL2 orbits and asymptotic orbits on the unstable manifold in a barred-spiral galactic model

(Tsoutsis, et al. 2009)

The manifold theory for spiral arms

The manifold theory and the Moser domain of convergence

$$H = \frac{1}{2} (p_x^2 + p_y^2) - \Omega_p(xp_y - yp_x) + \Phi(x, y)$$

Lagrangian points:
$$x_{L1}$$
, y_{L1} , $p_{x_{L1}}$, $p_{y_{L1}}$:
$$\frac{dx}{dt} = \frac{dy}{dt} = \frac{dp_x}{dt} = \frac{dp_y}{dt} = 0$$

$$\lambda_{1,2} = \pm \iota \, \omega_0 \qquad \qquad \lambda_{3,4} = \pm \nu_0$$

$$(x, y, p_x, p_y) \rightarrow (q, u, p, v)$$

$$H = \omega_0 \left(\frac{q^2 + p^2}{2}\right) + \nu_0 uv + \sum_{s=3}^{\infty} P_s(q, p, u, v)$$

$$u = u_0 e^{v_0 t}$$
 $v = v_0 e^{-v_0 t}$

"Moser" normal form construction

$$H = \frac{P_r^2}{2} + \frac{P_{\phi}^2}{2r^2} - \Omega_p \ P_{\phi} + \Phi(r, \phi)$$

$$\Phi(r,\phi) = \Phi_0(r) + \Phi_1(r)\cos 2\phi + \Phi_2(r)\sin 2\phi$$

$$r \to r_{L_1} + \delta r, \ P_r \to P_{r_{L_1}} + P_x, \ \phi \to \phi_{L_1} + \delta \phi, \ P_\phi \to P_{\phi_{L_1}} + J_\phi$$

$$\begin{pmatrix} \dot{\delta r} \\ \dot{\delta \phi} \\ \dot{P}_x \\ \dot{J}_{\phi} \end{pmatrix} = M \begin{pmatrix} \delta r \\ \delta \phi \\ P_x \\ J_{\phi} \end{pmatrix}$$

$$\begin{split} Z(I=iab,c=\xi\eta) &= i\omega_0 ab + \nu_0 \xi \eta + \zeta_{21} a^2 b^2 + \zeta_{22} \xi^2 \eta^2 \\ &+ \zeta_{23} ab \xi \eta + \zeta_{31} a^3 b^3 + \zeta_{32} ab \xi^2 \eta^2 \\ &+ \zeta_{33} q^2 p^2 \xi \eta + \zeta_{34} \xi^3 \eta^3 + \dots \end{split}$$

The extended Moser domains of convergence

Thank you