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Main drug release mechanisms
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Often more than one
mechanism is involved In
the release process.
Different mechanisms may
dominate at different stages
of the release

Fundamentals and Applications of Controlled Release Drug Delivery, Springer (2012)



Quantifying drug release profiles

Dependence of the release profiles on the device charstateri

Diffusion controlled release from:
spheres,
composite spheres,
and slabs

Numerical simulations (Monte Carlo) and analytical saof of diffusion
equation



Numerical procedure (Monte Carlo simulations)

To simulate diffusion from a sphere of radiRswe consider a 3D cubic lattice and then define a
spherical region inside it.

A number of drug particles is randomly placed in lattice calsde the sphere, avoiding double
occupancy, until a fixed initial particle concentration is reached in the spher

Diffusion is simulated by randomly selecting a particle at each MoratdoCstep and trying to
move it to arandomly selected nearest neighbor site. The move is allowed if the site is empty but
rejected if already occupied, assuming excluded volume interactions.

As soon as a particle migrates to a site lying outside of the sphere it is renfova our
simulation.

To simulate processes with different diffusion coefficieds<D,) we introduce an additional
parameterg (0<g<1), that can be directly linked to the relative diffusion coefficidnt D/D,, as
g=1-D,. At each MC step, the randomly chosen particle may stay immobile with apiid g,
or try to move with a probability x.

After each MC step, time is incremented byN({t), N(t) being the number of particles still
remaining in the system.
We follow the number of remaining particles inside the sphere as a function ef tintil the
sphere is completely empty.
The results are statistically averaged over a number of realizations )(~460g the same
problem parameters.

Kosmidis, Argyrakis, Machera$Pharm. Res. 20, 988 (2003)



Drug release from simple spherical devices
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A stretched exponential function M
accurately fits the numerically
obtained results

Hadjitheodorou, Kalosakadviater. Sci. Eng. C 33, 763 (2013)
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Drug release from simple spherical devices
Dependence of stretched exponential time parameter t
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Drug release from simple spherical devices
Dependence of stretched exponential exponent b
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Drug release from simple spherical devices
Analytical estimates from the solution of diffusion equation

Solution of diffusion eq. for drug molecules with dengilyn a spherical matrix of radiuR, with
homogeneously distributed drug particles as initial condition and sink boundary conditions:

£=DV2C C(F=0)=Cy=—e__ C(r=R1t)=0
ot (4/3)7R’

Writing diffusion eq. in spherical coordinates and taking into 7@ _ 1 dZ(I‘C)

account the symmetry of the problem, K& C(r,t), we get & r OTZ

ed n+l 2 2 D
C(r.t) = 3M, E D™ . (nar ¢ &* This equation can be solved, for=r C,
’ with the separation of variables method

The masd/; (t) of drug molecules inside g (t) = 47zTCr2dr _ 6M,, i 1 e F
the spherical matrix, at tinteequals to " S

M 6 < =
The released drugM, =M_-M. (t) =>» Mt =1- Z e R



Drug release from simple spherical devices
Analytical estimates from the solution of diffusion equation

Analytical solution:
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Drug release from composite spherical devices

Solution of diffusion eq. for a composite
spherical matrix with homogeneously @ D'FFUS'D“ @
distributed drug particles as initial

condition and sink boundary conditions:
ZDl R=RJ/R,, k=VD,/D,, and

the sum is over the positive rogtsof

kycofky(R —1)] + k*ycot(y) + (1-k*) =0

M Z (Dl(yn
Moo n=1 ¢2(yn)

@, (x) =— (sm (x)—5s1n(2x))sm[kx(R —1)]+%{R —ésm[kx(R -D]- cos[kx(Rr—l)]}sinz(x)

$,(X) = CSir[kx(R —1)] + ke3(R —1)sir(x) + 1

_kkz sin?(x)sint[kx(R, —1)]

If k(R-1) is rational (¥/m) the solution acquires an additional term:
6 ® 1 {(_1)mn+(1+m)ﬂ . k(Rr _1)[Rr — (_1)”1]}. e_nznzmzll:%t

7RIk + m) El n’ m I

Considering the dimensionless titgetD,/R;?, the solution depends only &andR.



Drug release from composite spherical devices. Results
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Hadjitheodorou, Kalosakadviater. Sci. Eng. C 42, 681 (2014)



Drug release from composite spherical devices
Dependence of stretched exponential parameters
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Drug release from slabs of non-uniform thickness
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Optical profilometer image of a thin polfcaprolactone) membrane loaded with 0.2% Verapamil Hydorae.
A surface region with dimensions around 600x459is shown.

The colorbar at the right displays the fluctuations of theee roughness.

The average thickness is around 2.7 mm in this case.

Kontopoulou, Bouropoulosinpublished.
Kontopoulou Diploma Thesis, Patras Univ. (2013)
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subgrid,
Bilinear interpolation is used to obtain the values at the
other points of the grid.

The position of each surface at the
grid varies in a range of2

The thickness of the slab varies in a
range of v (L+/-2w)

Upper surface of a non-uniform
thickness slab with=100 and
w=4, constructed with this methc

Kalosakas, Martiniint. J. Pharm. 496, 291 (2015




Drug release from slabs of non-uniform thickness
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results are fitted by a
stretched exponential
function.
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