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Main drug release mechanisms

• Diffusion 

• Chemical reactions (degradation, erosion, dissolution, etc.)

• Swelling 

Often more than one
mechanism is involved in
the release process.
Different mechanisms may
dominate at different stages
of the release

Lin and Metters, Adv. Drug Deliv. Rev. 58, 1379 (2006)
Siepmann and Siepmann,Int. J. Pharm. 364, 328 (2008)
Peppas and Narasimhan,J. Control. Release 190, 75 (2014)
Fundamentals and Applications of Controlled Release Drug Delivery, Springer (2012)



Quantifying drug release profiles

Dependence of the release profiles on the device characteristics

Numerical simulations (Monte Carlo) and analytical solutions of diffusion
equation

Diffusion controlled release from:
spheres,

composite spheres,
and slabs



Numerical procedure (Monte Carlo simulations)
To simulate diffusion from a sphere of radiusR, we consider a 3D cubic lattice and then define a
spherical region inside it.

A number of drug particles is randomly placed in lattice cellsinside the sphere, avoiding double
occupancy, until a fixed initial particle concentration is reached in the sphere.

Diffusion is simulated by randomly selecting a particle at each Monte Carlo step and trying to
move it to arandomly selected nearest neighbor site. The move is allowed if the site is empty but
rejected if already occupied, assuming excluded volume interactions.

As soon as a particle migrates to a site lying outside of the sphere it is removed from our
simulation.

To simulate processes with different diffusion coefficients (D≤D0) we introduce an additional
parameter,q (0≤q<1), that can be directly linked to the relative diffusion coefficient,Dr=D/D0, as
q=1-Dr. At each MC step, the randomly chosen particle may stay immobile with a probability q,
or try to move with a probability 1-q.

After each MC step, time is incremented by 1/N(t), N(t) being the number of particles still
remaining in the system.
We follow the number of remaining particles inside the sphere as a function of time, until the
sphere is completely empty.
The results are statistically averaged over a number of realizations (~100), using the same
problem parameters.

Kosmidis, Argyrakis, Macheras,  Pharm. Res. 20, 988 (2003)



Drug release from simple spherical devices

Fractional release from spheres of radii:
R=10, 16, 22, 26, 32       (Dr=D/D0=1)

Fractional release from spheres of different 
diffusion coefficients Dr (R=18)

A stretched exponential function
accurately fits the numerically
obtained results

Hadjitheodorou, Kalosakas,  Mater. Sci. Eng. C 33, 763 (2013)

Quantitative description:
what is the dependence of
parametersb andτ on the
device characteristics
(R,D,C0)?



Drug release from simple spherical devices
Dependence of stretched exponential time parameter τ

τ(R2) for initial drug concentrations: 0.9 (red squares), 
0.5 (black circles), 0.01 (blue triangles).  Dr=D/D0=1

τ(1/Dr) for different sphere radii R

τ = 0.058
R2

D
The numerical simulations result in



Drug release from simple spherical devices
Dependence of stretched exponential exponent b

b(1/R) for initial drug concentrations: 0.9 (red squares), 
0.5 (black circles), 0.01 (blue triangles).   Dr=D/D0=1

b(Dr) for different sphere radii R

b = 1.0

R/ lu
+ 0.61The numerical simulations result in



Drug release from simple spherical devices
Analytical estimates from the solution of diffusion equation

Solution of diffusion eq. for drug molecules with densityC in a spherical matrix of radiusR, with
homogeneously distributed drug particles as initial condition and sink boundary conditions:
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Writing diffusion eq. in spherical coordinates and taking into
account the symmetry of the problem, i.e.C=C(r,t), we get
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This equation can be solved, forU = r C,
with the separation of variables method

The mass Min(t) of drug molecules inside 
the spherical matrix, at time t, equals to
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The released drug:   Mt =M∞-Min(t) �



Drug release from simple spherical devices
Analytical estimates from the solution of diffusion equation

Analytical solution:
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Analytically obtained fractional release and fitting 
with a stretched exponential(b=0.68, τd=0.054) 

Analytical estimates:

τ = 0.054
R2

D

τ = 0.058
R2

D

independent ofC0

b = 1.0

R/ lu
+ 0.61

b = 0.68 independent ofR, D, C0

Numerical estimates:



Drug release from composite spherical devices

Solution of diffusion eq. for a composite
spherical matrix with homogeneously
distributed drug particles as initial
condition and sink boundary conditions:
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the sum is over the positive roots yn of

kycot ky(Rr −1)[ ] + k2ycot(y) + (1− k2) = 0

ϕ2(x) = kx2 sin2 kx(Rr −1)[ ] + kx2(Rr −1)sin2(x) + 1− k2

k
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If  k(Rr-1) is rational (=l/m) the solution acquires an additional term:

Considering the dimensionless time td=tD1/R1
2, the solution depends only on k and Rr



Drug release from composite spherical devices: Results

Analytical
fractional
release

Numerical
fractional
release

R2/R1=2

R2=32
R1=16

D1/D2=5

D1=1
D2=0.2

Continuous lines: fitting with stretched exponential

Hadjitheodorou, Kalosakas,  Mater. Sci. Eng. C 42, 681 (2014)



Drug release from composite spherical devices
Dependence of stretched exponential parameters

τd(D1/D2) for different radii ratios R2/R1, 
obtained from analytical results

τd(R2
2/R1

2) for different ratios D1/D2, 
obtained from numerical results

b(D1/D2) for different radii ratios R2/R1, 
obtained from numerical results

b(R1/R2) for different ratios D1/D2, 
obtained from analytiical results



Drug release from slabs of non-uniform thickness 
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Optical profilometer image of a thin poly(ε-caprolactone) membrane loaded with 0.2% Verapamil Hydrochloride.
A surface region with dimensions around 600x450µm is shown.
The colorbar at the right displays the fluctuations of the surface roughness.
The average thickness is around 2.7 mm in this case.

Kontopoulou, Bouropoulos, unpublished.
Kontopoulou, Diploma Thesis, Patras Univ. (2013)



Drug release from slabs of non-uniform thickness 

Kalosakas, Martini, Int. J. Pharm. 496, 291 (2015)

A sub-grid (red squares) is considered in thexy grid (black
circles).

Construction of rough slab surfaces
(considering a slab of average thicknessL and
degree of surface roughness,w)

The position of each surface at the 
grid varies in a range of 2w.
The thickness of the slab varies in a 
range of 4w (L+/-2w)

Upper surface of a non-uniform 
thickness slab with L=100 and 
w=4, constructed with this method

For the lower (upper) irregular surface, random numbers in
the region 0+/-w (L+/-w) are given at each point of the
subgrid.
Bilinear interpolation is used to obtain the values at the
other points of the grid.



Drug release from slabs of non-uniform thickness
Results from a slab of dimensions (20pbc, 20pbc, 60+/-2w) 

Thickness distribution for different values 
of the degree of surface roughness w

Fractional release for different values of 
the degree of surface roughness w

Dependence of the 
stretched exponential 
parameters on the degree 
of surface roughness 
(∆L=2w)

The numerical release 
results are fitted by a 
stretched exponential 
function.


