
25ο Θερινό Σχολείο-Συνέδριο
"Δυναμικά Συστήματα και Πολυπλοκότητα"
ΕΚΕΦΕ "Δημόκριτος"
Αθήνα, 9-17 Ιουλίου 2018

Data-driven discovery of nonlinear dynamical systems

Paris Perdikaris
Department of Mechanical Engineering and Applied Mechanics
University of Pennsylvania
email: pgp@seas.upenn.edu

mailto:pgp@seas.upenn.edu?subject=

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t

�5

0

5

x

|h(t, x)|
Data (150 points)

0.5
1.0
1.5
2.0
2.5
3.0
3.5

�5 0 5

x

0

5

|h(
t
,
x
)|

t = 0.59

�5 0 5

x

0

5

|h(
t
,
x
)|

t = 0.79

Exact Prediction

�5 0 5

x

0

5

|h(
t
,
x
)|

t = 0.98

Figure 1: Shrödinger equation: Top: Predicted solution |h(t, x)| along with the initial and
boundary training data. In addition we are using 20,000 collocation points generated using
a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact
solutions corresponding to the three temporal snapshots depicted by the dashed vertical
lines in the top panel. The relative L2 error for this case is 1.97 · 10�3.

neural network can accurately capture the intricate nonlinear behavior of the230

Schrödinger equation.231

232

One potential limitation of the continuous time neural network models233

considered so far stems from the need to use a large number of colloca-234

tion points N

f

in order to enforce physics-informed constraints in the en-235

tire spatio-temporal domain. Although this poses no significant issues for236

problems in one or two spatial dimensions, it may introduce a severe bot-237

tleneck in higher dimensional problems, as the total number of collocation238

points needed to globally enforce a physics-informed constrain (i.e., in our239

case a partial di↵erential equation) will increase exponentially. Although240

this limitation could be addressed to some extend using sparse grid or quasi241

Monte-Carlo sampling schemes [41, 42], in the next section, we put forth a242

di↵erent approach that circumvents the need for collocation points by in-243

9

Overview
Data-driven solution of differential equations Data-driven discovery of differential equations

Data Models

Machine
learning CSE

• Psichogios, D. C., & Ungar, L. H. (1992). A hybrid neural network‐first principles approach to process modeling. AIChE Journal, 38(10), 1499-1511.
• Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1997). Artificial neural networks for solving ordinary and partial differential equations. arXiv preprint

physics/9705023.
• Rico-Martinez, R., Anderson, J. S., & Kevrekidis, I. G. (1994, September). Continuous-time nonlinear signal processing: a neural network based

approach for gray box identification. In Neural Networks for Signal Processing [1994] IV. Proceedings of the 1994 IEEE Workshop (pp. 596-605).
IEEE.

…some old ideas revisited with modern computational tools:

�15 �10 �5 0 5 10 15 20 25

x

�5

0

5

y

Vorticity

�3

�2

�1

0

1

2

3

x

t

y

u(t, x, y)

x

t

y

v(t, x, y)

Figure 3: Navier-Stokes equation: Top: Incompressible flow and dynamic vortex shedding
past a circular cylinder at Re = 100. The spatio-temporal training data correspond to
the depicted rectangular region in the cylinder wake. Bottom: Locations of training data-
points for the the stream-wise and transverse velocity components, u(t, x, y) and v(t, x, t),
respectively.

414

A more intriguing result stems from the network’s ability to provide a415

qualitatively accurate prediction of the entire pressure field p(t, x, y) in the416

absence of any training data on the pressure itself. A visual comparison417

against the exact pressure solution is presented in figure 4 for a represen-418

tative pressure snapshot. Notice that the di↵erence in magnitude between419

the exact and the predicted pressure is justified by the very nature of the420

incompressible Navier-Stokes system, as the pressure field is only identifiable421

up to a constant. This result of inferring a continuous quantity of interest422

from auxiliary measurements by leveraging the underlying physics is a great423

example of the enhanced capabilities that physics-informed neural networks424

17

Time-resolved adaptive finite element simulation of turbulent
flow past an aircraft (DLR F11 high-lift configuration).

Simulation is by CTL (http://www.csc.kth.se/ctl)

Data Models

Time-resolved adaptive finite element simulation of turbulent
flow past an aircraft (DLR F11 high-lift configuration).

Simulation is by CTL (http://www.csc.kth.se/ctl)

Data Models

0.0 0.2 0.4 0.6 0.8

t

�1.0

�0.5

0.0

0.5

1.0

x

u(t, x)

Data (100 points)

�0.75
�0.50
�0.25
0.00
0.25
0.50
0.75

�1 0 1

x

�1

0

1

u
(t

,
x
)

t = 0.25

�1 0 1

x

�1

0

1

u
(t

,
x
)

t = 0.50

Exact Prediction

�1 0 1

x

�1

0

1

u
(t

,
x
)

t = 0.75

Figure 1: Burgers’ equation: Top: Predicted solution u(t, x) along with the initial and
boundary training data. In addition we are using 10,000 collocation points generated using
a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact
solutions corresponding to the three temporal snapshots depicted by the white vertical
lines in the top panel. The relative L2 error for this case is 6.7 ·10�4. Model training took
approximately 60 seconds on a single NVIDIA Titan X GPU card.

ical law through the collocation points N
f

, one can obtain a more accurate
and data-e�cient learning algorithm.1 Finally, table 2 shows the resulting
relative L2 for di↵erent number of hidden layers, and di↵erent number of
neurons per layer, while the total number of training and collocation points
is kept fixed to N

u

= 100 and N

f

= 10, 000, respectively. As expected, we
observe that as the number of layers and neurons is increased (hence the
capacity of the neural network to approximate more complex functions), the

1Note that the case Nf = 0 corresponds to a standard neural network model, i.e., a
neural network that does not take into account the underlying governing equation.

8

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv preprint arXiv

Physics-informed neural networks

Data Models

x

t
f

f = ut +N [u;�]

u

h(1)
1

h(1)
2

h(1)
3

h(1)
4

h(1)
5

h(1)
6

h(2)
1

h(2)
2

h(2)
3

h(2)
4

t

x

u(t,x)

Physics-informed neural networks

Automatic differentiation

Data-driven solution of PDEs

that the current state-of-the-art machine learning tools (e.g., deep/convolu-
tional/recurrent neural networks) are lacking robustness and fail to provide
any guarantees of convergence when operating in the small data regime, i.e.,
the regime where very few training examples are available.

In the first part of this study, we introduced physics informed neural net-

works as a viable solution for training deep neural networks with few training
examples, for cases where the available data is known to respect a given phys-
ical law described by a system of partial di↵erential equations. Such cases are
abundant in the study of physical, biological, and engineering systems, where
longstanding developments of mathematical physics have shed tremendous
insight on how such systems are structured, interact, and dynamically evolve
in time. We saw how the knowledge of an underlying physical law can in-
troduce structure that e↵ectively regularizes the training of neural networks,
and enables them to generalize well even when only a few training examples
are available. Through the lens of di↵erent benchmark problems, we high-
lighted the key features of physics informed neural networks in the context
of data-driven solutions of partial di↵erential equations [5, 6].

In this second part of our study, we shift our attention to the problem of
data-driven discovery of partial di↵erential equations [7, 8, 9]. To this end,
let us consider parametrized and nonlinear partial di↵erential equations of
the general form

u

t

+ N [u;�] = 0, x 2 ⌦, t 2 [0, T], (1)

where u(t, x) denotes the latent (hidden) solution, N [·;�] is a nonlinear op-
erator parametrized by �, and ⌦ is a subset of RD. This setup encapsulates a
wide range of problems in mathematical physics including conservation laws,
di↵usion processes, advection-di↵usion-reaction systems, and kinetic equa-
tions. As a motivating example, the one dimensional Burgers’ equation [10]
corresponds to the case where N [u;�] = �1uux

� �2uxx

and � = (�1,�2).
Here, the subscripts denote partial di↵erentiation in either time or space.
Now, the problem of data-driven discovery of partial di↵erential equations
poses the following question: given a small set of scattered and potentially
noisy observations of the hidden state u(t, x) of a system, what are the pa-
rameters � that best describe the observed data?

2

In what follows, we will provide an overview of our two main approaches
to tackle this problem, namely continuous time and discrete time models, as
well as a series of results and systematic studies for a diverse collection of
benchmarks. In the first approach, we will assume availability of scattered
and potential noisy measurements across the entire spatio-temporal domain.
In the latter, we will try to infer the unknown parameters � from only two
data snapshots taken at distinct time instants. All data and codes used in
this manuscript are publicly available on GitHub at https://github.com/
maziarraissi/PINNs.

2. Continuous Time Models

We define f(t, x) to be given by the left-hand-side of equation (1); i.e.,

f := u

t

+ N [u;�], (2)

and proceed by approximating u(t, x) by a deep neural network. This as-
sumption along with equation (2) result in a physics informed neural network

f(t, x). This network can be derived by applying the chain rule for di↵er-
entiating compositions of functions using automatic di↵erentiation [11]. It
is worth highlighting that the parameters of the di↵erential operator � turn
into parameters of the physics informed neural network f(t, x).

2.1. Example (Burgers’ Equation)

As a first example, let us consider the Burgers’ equation. This equation
arises in various areas of applied mathematics, including fluid mechanics,
nonlinear acoustics, gas dynamics, and tra�c flow [10]. It is a fundamen-
tal partial di↵erential equation and can be derived from the Navier-Stokes
equations for the velocity field by dropping the pressure gradient term. For
small values of the viscosity parameters, Burgers’ equation can lead to shock
formation that is notoriously hard to resolve by classical numerical methods.
In one space dimension the equation reads as

u

t

+ �1uux

� �2uxx

= 0. (3)

Let us define f(t, x) to be given by

f := u

t

+ �1uux

� �2uxx

, (4)

3

and proceed by approximating u(t, x) by a deep neural network. This will
result in the physics informed neural network f(t, x). The shared parameters
of the neural networks u(t, x) and f(t, x) along with the parameters � =
(�1,�2) of the di↵erential operator can be learned by minimizing the mean
squared error loss

MSE = MSE

u

+MSE

f

, (5)

where

MSE

u

=
1

N

NX

i=1

|u(ti
u

, x

i

u

) � u

i|2,

and

MSE

f

=
1

N

NX

i=1

|f(ti
u

, x

i

u

)|2.

Here, {ti
u

, x

i

u

, u

i}N

i=1 denote the training data on u(t, x). The loss MSE

u

cor-
responds to the training data on u(t, x) while MSE

f

enforces the structure
imposed by equation (3) at a finite set of collocation points, whose number
and location is taken to be the same as the training data.

To illustrate the e↵ectiveness of our approach, we have created a train-
ing data-set by randomly generating N = 2, 000 points across the entire
spatio-temporal domain from the exact solution corresponding to �1 = 1.0
and �2 = 0.01/⇡. The locations of the training points are illustrated in the
top panel of figure 1. This data-set is then used to train a 9-layer deep
neural network with 20 neurons per hidden layer by minimizing the mean
square error loss of (5) using the L-BFGS optimizer [12]. Upon training,
the network is calibrated to predict the entire solution u(t, x), as well as the
unknown parameters � = (�1,�2) that define the underlying dynamics. A
visual assessment of the predictive accuracy of the physics informed neural

network is given in the middle and bottom panels of figure 1. The network is
able to identify the underlying partial di↵erential equation with remarkable
accuracy, even in the case where the scattered training data is corrupted with
1% uncorrelated noise.

To further scrutinize the performance of our algorithm, we have performed
a systematic study with respect to the total number of training data, the
noise corruption levels, and the neural network architecture. The results are
summarized in tables 1 and 2. The key observation here is that the proposed

4

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv preprint arXiv

the viscosity parameters, Burgers’ equation can lead to shock formation that
is notoriously hard to resolve by classical numerical methods. In one space
dimension, the Burger’s equation along with Dirichlet boundary conditions
reads as

u

t

+ uu

x

� (0.01/⇡)u
xx

= 0, x 2 [�1, 1], t 2 [0, 1], (3)

u(0, x) = � sin(⇡x),

u(t,�1) = u(t, 1) = 0.

Let us define f(t, x) to be given by

f := u

t

+ uu

x

� (0.01/⇡)u
xx

,

and proceed by approximating u(t, x) by a deep neural network. To highlight
the simplicity in implementing this idea we have included a Python code
snippet using Tensorflow [16]; currently one of the most popular and well
documented open source libraries for machine learning computations. To
this end, u(t, x) can be simply defined as

def u(t, x):

u = neural_net(tf.concat([t,x],1), weights, biases)

return u

Correspondingly, the physics informed neural network f(t, x) takes the form

def f(t, x):

u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x)[0]

u_xx = tf.gradients(u_x, x)[0]

f = u_t + u*u_x - (0.01/tf.pi)*u_xx

return f

The shared parameters between the neural networks u(t, x) and f(t, x) can
be learned by minimizing the mean squared error loss

MSE = MSE

u

+MSE

f

, (4)

5

Example: Burgers’ equation in 1D

the viscosity parameters, Burgers’ equation can lead to shock formation that
is notoriously hard to resolve by classical numerical methods. In one space
dimension, the Burger’s equation along with Dirichlet boundary conditions
reads as

u

t

+ uu

x

� (0.01/⇡)u
xx

= 0, x 2 [�1, 1], t 2 [0, 1], (3)

u(0, x) = � sin(⇡x),

u(t,�1) = u(t, 1) = 0.

Let us define f(t, x) to be given by

f := u

t

+ uu

x

� (0.01/⇡)u
xx

,

and proceed by approximating u(t, x) by a deep neural network. To highlight
the simplicity in implementing this idea we have included a Python code
snippet using Tensorflow [16]; currently one of the most popular and well
documented open source libraries for machine learning computations. To
this end, u(t, x) can be simply defined as

def u(t, x):

u = neural_net(tf.concat([t,x],1), weights, biases)

return u

Correspondingly, the physics informed neural network f(t, x) takes the form

def f(t, x):

u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x)[0]

u_xx = tf.gradients(u_x, x)[0]

f = u_t + u*u_x - (0.01/tf.pi)*u_xx

return f

The shared parameters between the neural networks u(t, x) and f(t, x) can
be learned by minimizing the mean squared error loss

MSE = MSE

u

+MSE

f

, (4)

5

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv preprint arXiv

Physics-informed neural networks

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv preprint arXiv

Physics-informed neural networks

Data Models

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t

�5

0

5

x

|h(t, x)|
Data (150 points)

0.5
1.0
1.5
2.0
2.5
3.0
3.5

�5 0 5

x

0

5

|h(
t
,
x
)|

t = 0.59

�5 0 5

x

0

5

|h(
t
,
x
)|

t = 0.79

Exact Prediction

�5 0 5

x

0

5

|h(
t
,
x
)|

t = 0.98

Figure 1: Shrödinger equation: Top: Predicted solution |h(t, x)| along with the initial and
boundary training data. In addition we are using 20,000 collocation points generated using
a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact
solutions corresponding to the three temporal snapshots depicted by the dashed vertical
lines in the top panel. The relative L2 error for this case is 1.97 · 10�3.

neural network can accurately capture the intricate nonlinear behavior of the230

Schrödinger equation.231

232

One potential limitation of the continuous time neural network models233

considered so far stems from the need to use a large number of colloca-234

tion points N

f

in order to enforce physics-informed constraints in the en-235

tire spatio-temporal domain. Although this poses no significant issues for236

problems in one or two spatial dimensions, it may introduce a severe bot-237

tleneck in higher dimensional problems, as the total number of collocation238

points needed to globally enforce a physics-informed constrain (i.e., in our239

case a partial di↵erential equation) will increase exponentially. Although240

this limitation could be addressed to some extend using sparse grid or quasi241

Monte-Carlo sampling schemes [41, 42], in the next section, we put forth a242

di↵erent approach that circumvents the need for collocation points by in-243

9

Accounting for uncertainty

Accounting for uncertainty

Physics informed machine learning with deep generative models

2

r
s
p

a
.
r
o
y
a

l
s
o

c
i
e

t
y
p

u
b
l
i
s
h

i
n

g
.
o

r
g

P
r
o

c
R

S
o

c
A

0
0

0
0

0
0

0

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

2. Methods

(a) Conditional variational auto-encoders

x2Rd

, y 2Rk

,

ˆ

y 2Rm

, z 2Rh

p(z|x,y, ŷ)
| {z }

posterior

=

likelihoodz }| {
p(y|x, ŷ, z)

prior

z }| {
p(z|x, ŷ)p(ŷ|x)

p(y|x)
| {z }

marginal likelihood

(2.1)

� log(y|x) Ez⇠q

[log q(z|x,y, ŷ)� log p(z|x, ŷ)� log p(ŷ|x)]� Ez⇠q

[log p(y|x, ŷ, z)] (2.2)

(b) Adversarial inference with implicit distributions

T ⇤
(x,y, ŷ, z) = log q(z|x,y, ŷ)� log p(z|x, ŷ)p(ŷ|x) (2.3)

p(y|x, ŷ, z) = f
✓

(x, ŷ, z, ✏) (2.4)

q(z|x,y, ŷ) = f
�

(x,y, ŷ, ✏) (2.5)

p(z|x, ŷ) = f
�

(x, ŷ, ✏) (2.6)

T (x,y, ŷ, z) = f

(x,y, ŷ, z) (2.7)

✏⇠N (0, I) (2.8)

min

✓,�,�

{Ez⇠q

[T (x,y, ŷ, z)� log p(y|x, ŷ, z)]} (2.9)

min

{�Ez⇠q

[log �(T (x,y, ŷ, z))]� Ez⇠p

[log(1� �(T (x,y, ŷ, z)))]} (2.10)

p(z|u,x)
| {z }

posterior

=

likelihoodz }| {
p(u|x, z)

prior

z }| {
p(z|x)

p(u|x)
| {z }

marginal likelihood

, such that u
t

+N
x

[u] = 0 (2.11)

(c) Learning to make conditional predictions

3. Results

(a) Canonical benchmarks

(b) Application to fluid mechanics

4. Conclusion

The conclusion text goes here.

Data Accessibility. All data and code accompanying this manuscript can be accessed at www.

placeholder.com.

Authors’ Contributions. PP conceived the methods, implemented the algorithms, designed and performed

the experiments, and drafted the manuscript.

Competing Interests. There are no competing interests associated with this work.

u

xx

� u

2
u

x

= f(x)Example in 1D:

Data-driven discovery of PDEs

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations. arXiv preprint

tives.1 Here, the subscripts denote partial di↵erentiation in either time t or
space x.2 Given a set of scattered and potentially noisy observations of the
solution u, we are interested in learning the nonlinear function N and con-
sequently discovering the hidden laws of physics that govern the evolution of
the observed data.

For instance, let us assume that we would like to discover the Burger’s
equation [36] in one space dimension u

t

= �uu

x

+ 0.1u
xx

. Although not
pursued in the current work, a viable approach [1] to tackle this problem is
to create a dictionary of possible terms and write the following expansion

N (t, x, u, u
x

, u

xx

, . . .) = ↵0,0 + ↵1,0u+ ↵2,0u
2 + ↵3,0u

3 +

↵0,1ux

+ ↵1,1uux

+ ↵2,1u
2
u

x

+ ↵3,1u
3
u

x

+

↵0,2uxx

+ ↵1,2uuxx

+ ↵2,2u
2
u

xx

+ ↵3,2u
3
u

xx

+

↵0,3uxxx

+ ↵1,3uuxxx

+ ↵2,3u
2
u

xxx

+ ↵3,3u
3
u

xxx

.

Given the aforementioned large collection of candidate terms for construct-
ing the partial di↵erential equation, one could then use sparse regression
techniques [1] to determine the coe�cients ↵

i,j

and consequently the right-
hand-side terms that are contributing to the dynamics. A huge advantage of
this approach is the interpretability of the learned equations. However, there
are two major drawbacks with this method.

First, it relies on numerical di↵erentiation to compute the derivatives in-
volved in equation (1). Derivatives are taken either using finite di↵erences for
clean data or with polynomial interpolation in the presence of noise. Numer-
ical approximations of derivatives are inherently ill-conditioned and unstable
[37] even in the absence of noise in the data. This is due to the introduction
of truncation and round-o↵ errors inflicted by the limited precision of com-
putations and the chosen value of the step size for finite di↵erencing. Thus,

1 The solution u = (u1, . . . , un

) could be n dimensional in which case u

x

denotes the
collection of all element-wise first order derivatives @u1

@x

, . . . ,

@un
@x

. Similarly, u

xx

includes

all element-wise second order derivatives @

2
u1

@x

2 , . . . ,

@

2
un

@x

2 .
2 The space x = (x1, x2, . . . , xm

) could be a vector of dimension m. In this case, u

x

denotes the collection of all first order derivative u

x1 , ux2 , . . . , uxm and u

xx

represents the
set of all second order derivatives u

x1x1 , ux1x2 , . . . , ux1xm , . . . , u

xmxm .

3

Data Models

that the current state-of-the-art machine learning tools (e.g., deep/convolu-
tional/recurrent neural networks) are lacking robustness and fail to provide
any guarantees of convergence when operating in the small data regime, i.e.,
the regime where very few training examples are available.

In the first part of this study, we introduced physics informed neural net-

works as a viable solution for training deep neural networks with few training
examples, for cases where the available data is known to respect a given phys-
ical law described by a system of partial di↵erential equations. Such cases are
abundant in the study of physical, biological, and engineering systems, where
longstanding developments of mathematical physics have shed tremendous
insight on how such systems are structured, interact, and dynamically evolve
in time. We saw how the knowledge of an underlying physical law can in-
troduce structure that e↵ectively regularizes the training of neural networks,
and enables them to generalize well even when only a few training examples
are available. Through the lens of di↵erent benchmark problems, we high-
lighted the key features of physics informed neural networks in the context
of data-driven solutions of partial di↵erential equations [5, 6].

In this second part of our study, we shift our attention to the problem of
data-driven discovery of partial di↵erential equations [7, 8, 9]. To this end,
let us consider parametrized and nonlinear partial di↵erential equations of
the general form

u

t

+ N [u;�] = 0, x 2 ⌦, t 2 [0, T], (1)

where u(t, x) denotes the latent (hidden) solution, N [·;�] is a nonlinear op-
erator parametrized by �, and ⌦ is a subset of RD. This setup encapsulates a
wide range of problems in mathematical physics including conservation laws,
di↵usion processes, advection-di↵usion-reaction systems, and kinetic equa-
tions. As a motivating example, the one dimensional Burgers’ equation [10]
corresponds to the case where N [u;�] = �1uux

� �2uxx

and � = (�1,�2).
Here, the subscripts denote partial di↵erentiation in either time or space.
Now, the problem of data-driven discovery of partial di↵erential equations
poses the following question: given a small set of scattered and potentially
noisy observations of the hidden state u(t, x) of a system, what are the pa-
rameters � that best describe the observed data?

2

Data-driven discovery of PDEs

that the current state-of-the-art machine learning tools (e.g., deep/convolu-
tional/recurrent neural networks) are lacking robustness and fail to provide
any guarantees of convergence when operating in the small data regime, i.e.,
the regime where very few training examples are available.

In the first part of this study, we introduced physics informed neural net-

works as a viable solution for training deep neural networks with few training
examples, for cases where the available data is known to respect a given phys-
ical law described by a system of partial di↵erential equations. Such cases are
abundant in the study of physical, biological, and engineering systems, where
longstanding developments of mathematical physics have shed tremendous
insight on how such systems are structured, interact, and dynamically evolve
in time. We saw how the knowledge of an underlying physical law can in-
troduce structure that e↵ectively regularizes the training of neural networks,
and enables them to generalize well even when only a few training examples
are available. Through the lens of di↵erent benchmark problems, we high-
lighted the key features of physics informed neural networks in the context
of data-driven solutions of partial di↵erential equations [5, 6].

In this second part of our study, we shift our attention to the problem of
data-driven discovery of partial di↵erential equations [7, 8, 9]. To this end,
let us consider parametrized and nonlinear partial di↵erential equations of
the general form

u

t

+ N [u;�] = 0, x 2 ⌦, t 2 [0, T], (1)

where u(t, x) denotes the latent (hidden) solution, N [·;�] is a nonlinear op-
erator parametrized by �, and ⌦ is a subset of RD. This setup encapsulates a
wide range of problems in mathematical physics including conservation laws,
di↵usion processes, advection-di↵usion-reaction systems, and kinetic equa-
tions. As a motivating example, the one dimensional Burgers’ equation [10]
corresponds to the case where N [u;�] = �1uux

� �2uxx

and � = (�1,�2).
Here, the subscripts denote partial di↵erentiation in either time or space.
Now, the problem of data-driven discovery of partial di↵erential equations
poses the following question: given a small set of scattered and potentially
noisy observations of the hidden state u(t, x) of a system, what are the pa-
rameters � that best describe the observed data?

2

In what follows, we will provide an overview of our two main approaches
to tackle this problem, namely continuous time and discrete time models, as
well as a series of results and systematic studies for a diverse collection of
benchmarks. In the first approach, we will assume availability of scattered
and potential noisy measurements across the entire spatio-temporal domain.
In the latter, we will try to infer the unknown parameters � from only two
data snapshots taken at distinct time instants. All data and codes used in
this manuscript are publicly available on GitHub at https://github.com/
maziarraissi/PINNs.

2. Continuous Time Models

We define f(t, x) to be given by the left-hand-side of equation (1); i.e.,

f := u

t

+ N [u;�], (2)

and proceed by approximating u(t, x) by a deep neural network. This as-
sumption along with equation (2) result in a physics informed neural network

f(t, x). This network can be derived by applying the chain rule for di↵er-
entiating compositions of functions using automatic di↵erentiation [11]. It
is worth highlighting that the parameters of the di↵erential operator � turn
into parameters of the physics informed neural network f(t, x).

2.1. Example (Burgers’ Equation)

As a first example, let us consider the Burgers’ equation. This equation
arises in various areas of applied mathematics, including fluid mechanics,
nonlinear acoustics, gas dynamics, and tra�c flow [10]. It is a fundamen-
tal partial di↵erential equation and can be derived from the Navier-Stokes
equations for the velocity field by dropping the pressure gradient term. For
small values of the viscosity parameters, Burgers’ equation can lead to shock
formation that is notoriously hard to resolve by classical numerical methods.
In one space dimension the equation reads as

u

t

+ �1uux

� �2uxx

= 0. (3)

Let us define f(t, x) to be given by

f := u

t

+ �1uux

� �2uxx

, (4)

3

and proceed by approximating u(t, x) by a deep neural network. This will
result in the physics informed neural network f(t, x). The shared parameters
of the neural networks u(t, x) and f(t, x) along with the parameters � =
(�1,�2) of the di↵erential operator can be learned by minimizing the mean
squared error loss

MSE = MSE

u

+MSE

f

, (5)

where

MSE

u

=
1

N

NX

i=1

|u(ti
u

, x

i

u

) � u

i|2,

and

MSE

f

=
1

N

NX

i=1

|f(ti
u

, x

i

u

)|2.

Here, {ti
u

, x

i

u

, u

i}N

i=1 denote the training data on u(t, x). The loss MSE

u

cor-
responds to the training data on u(t, x) while MSE

f

enforces the structure
imposed by equation (3) at a finite set of collocation points, whose number
and location is taken to be the same as the training data.

To illustrate the e↵ectiveness of our approach, we have created a train-
ing data-set by randomly generating N = 2, 000 points across the entire
spatio-temporal domain from the exact solution corresponding to �1 = 1.0
and �2 = 0.01/⇡. The locations of the training points are illustrated in the
top panel of figure 1. This data-set is then used to train a 9-layer deep
neural network with 20 neurons per hidden layer by minimizing the mean
square error loss of (5) using the L-BFGS optimizer [12]. Upon training,
the network is calibrated to predict the entire solution u(t, x), as well as the
unknown parameters � = (�1,�2) that define the underlying dynamics. A
visual assessment of the predictive accuracy of the physics informed neural

network is given in the middle and bottom panels of figure 1. The network is
able to identify the underlying partial di↵erential equation with remarkable
accuracy, even in the case where the scattered training data is corrupted with
1% uncorrelated noise.

To further scrutinize the performance of our algorithm, we have performed
a systematic study with respect to the total number of training data, the
noise corruption levels, and the neural network architecture. The results are
summarized in tables 1 and 2. The key observation here is that the proposed

4

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations. arXiv preprint

Example: Burgers’ equation in 1D

In what follows, we will provide an overview of our two main approaches
to tackle this problem, namely continuous time and discrete time models, as
well as a series of results and systematic studies for a diverse collection of
benchmarks. In the first approach, we will assume availability of scattered
and potential noisy measurements across the entire spatio-temporal domain.
In the latter, we will try to infer the unknown parameters � from only two
data snapshots taken at distinct time instants. All data and codes used in
this manuscript are publicly available on GitHub at https://github.com/
maziarraissi/PINNs.

2. Continuous Time Models

We define f(t, x) to be given by the left-hand-side of equation (1); i.e.,

f := u

t

+ N [u;�], (2)

and proceed by approximating u(t, x) by a deep neural network. This as-
sumption along with equation (2) result in a physics informed neural network

f(t, x). This network can be derived by applying the chain rule for di↵er-
entiating compositions of functions using automatic di↵erentiation [11]. It
is worth highlighting that the parameters of the di↵erential operator � turn
into parameters of the physics informed neural network f(t, x).

2.1. Example (Burgers’ Equation)

As a first example, let us consider the Burgers’ equation. This equation
arises in various areas of applied mathematics, including fluid mechanics,
nonlinear acoustics, gas dynamics, and tra�c flow [10]. It is a fundamen-
tal partial di↵erential equation and can be derived from the Navier-Stokes
equations for the velocity field by dropping the pressure gradient term. For
small values of the viscosity parameters, Burgers’ equation can lead to shock
formation that is notoriously hard to resolve by classical numerical methods.
In one space dimension the equation reads as

u

t

+ �1uux

� �2uxx

= 0. (3)

Let us define f(t, x) to be given by

f := u

t

+ �1uux

� �2uxx

, (4)

3

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations. arXiv preprint

Physics-informed neural networks

Physics-informed neural networks

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations. arXiv preprint

Raissi, M. (2018). Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations. arXiv preprint arXiv:1801.06637.

1. Introduction

Recent advances in machine learning in addition to new data recordings
and sensor technologies have the potential to revolutionize our understand-
ing of the physical world in modern application areas such as neuroscience,
epidemiology, finance, and dynamic network analysis where first-principles
derivations may be intractable [1]. In particular, many concepts from statis-
tical learning can be integrated with classical methods in applied mathemat-
ics to help us discover su�ciently sophisticated and accurate mathematical
models of complex dynamical systems directly from data. This integration
of nonlinear dynamics and machine learning opens the door for principled
methods for model construction, predictive modeling, nonlinear control, and
reinforcement learning strategies. The literature on data-driven discovery of
dynamical systems [2] is vast and encompasses equation-free modeling [3], ar-
tificial neural networks [4, 5, 6, 7], nonlinear regression [8], empirical dynamic
modeling [9, 10], modeling emergent behavior [11], automated inference of
dynamics [12, 13, 14], normal form identification in climate [15], nonlinear
Laplacian spectral analysis [16], modeling emergent behavior [11], Koopman
analysis [17, 18, 19, 20], automated inference of dynamics [12, 13, 14], and
symbolic regression [21, 22]. More recently, sparsity [23] has been used to de-
termine the governing dynamical system [24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

Less well studied is how to discover the underlying physical laws expressed
by partial di↵erential equations from scattered data collected in space and
time. Inspired by recent developments in physics-informed deep learning

[34, 35], we construct structured nonlinear regression models that can uncover
the dynamic dependencies in a given set of spatio-temporal dataset, and
return a closed form model that can be subsequently used to forecast future
states. In contrast to recent approaches to systems identification [24, 1], here
we do not need to have direct access or approximations to temporal or spatial
derivatives. Moreover, we are using a richer class of function approximators
to represent the nonlinear dynamics and consequently we do not have to
commit to a particular family of basis functions. Specifically, we consider
nonlinear partial di↵erential equations of the general form

u

t

= N (t, x, u, u
x

, u

xx

, . . .), (1)

where N is a nonlinear function of time t, space x, solution u and its deriva-

2

0 10 20 30 40

t

�20

�10

0

10

20

x

Exact Dynamics

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40

t

�20

�10

0

10

20

x

Learned Dynamics

�0.5

0.0

0.5

1.0

1.5

2.0

Figure 3: The KdV equation: A solution to the KdV equation (left panel) is compared to
the corresponding solution of the learned partial di↵erential equation (right panel). The
identified system correctly captures the form of the dynamics and accurately reproduces
the solution with a relative L

2-error of 6.28e-02. It should be emphasized that the training
data are collected in roughly two-thirds of the domain between times t = 0 and t = 26.8
represented by the white vertical lines. The algorithm is thus extrapolating from time
t = 26.8 onwards. The relative L

2-error on the training portion of the domain is 3.78e-02.

fectiveness of our approach, we solve the learned partial di↵erential equation
(7) using the PINNs algorithm [34]. We assume periodic boundary condi-
tions and the same initial condition as the one used to generate the original
dataset. The resulting solution of the learned partial di↵erential equation as
well as the exact solution of the KdV equation are depicted in figure 3. This
figure indicates that our algorithm is capable of accurately identifying the
underlying partial di↵erential equation with a relative L

2-error of 6.28e-02.
It should be highlighted that the training data are collected in roughly two-
thirds of the domain between times t = 0 and t = 26.8. The algorithm is
thus extrapolating from time t = 26.8 onwards. The corresponding relative
L

2-error on the training portion of the domain is 3.78e-02.

To test the algorithm even further, let us change the initial condition to
cos(�⇡x/20) and solve the KdV (6) using the conventional spectral method
outlined above. We compare the resulting solution to the one obtained by
solving the learned partial di↵erential equation (5) using the PINNs algo-
rithm [34]. It is worth emphasizing that the algorithm is trained on the
dataset depicted in figure 3 and is being tested on a di↵erent dataset as
shown in figure 4. The surprising result reported in figure 4 strongly indi-
cates that the algorithm is accurately learning the underlying partial di↵er-

13

Figure 3: The KdV equation: A solution to the KdV equation (left panel) is compared to
the corresponding solution of the learned partial di↵erential equation (right panel). The
identified system correctly captures the form of the dynamics and accurately reproduces
the solution with a relative L

2-error of 6.28e-02. It should be emphasized that the training
data are collected in roughly two-thirds of the domain between times t = 0 and t = 26.8
represented by the white vertical lines. The algorithm is thus extrapolating from time
t = 26.8 onwards. The relative L

2-error on the training portion of the domain is 3.78e-02.

fectiveness of our approach, we solve the learned partial di↵erential equation
(7) using the PINNs algorithm [34]. We assume periodic boundary condi-
tions and the same initial condition as the one used to generate the original
dataset. The resulting solution of the learned partial di↵erential equation as
well as the exact solution of the KdV equation are depicted in figure 3. This
figure indicates that our algorithm is capable of accurately identifying the
underlying partial di↵erential equation with a relative L

2-error of 6.28e-02.
It should be highlighted that the training data are collected in roughly two-
thirds of the domain between times t = 0 and t = 26.8. The algorithm is
thus extrapolating from time t = 26.8 onwards. The corresponding relative
L

2-error on the training portion of the domain is 3.78e-02.

To test the algorithm even further, let us change the initial condition to
cos(�⇡x/20) and solve the KdV (6) using the conventional spectral method
outlined above. We compare the resulting solution to the one obtained by
solving the learned partial di↵erential equation (5) using the PINNs algo-
rithm [34]. It is worth emphasizing that the algorithm is trained on the
dataset depicted in figure 3 and is being tested on a di↵erent dataset as
shown in figure 4. The surprising result reported in figure 4 strongly indi-
cates that the algorithm is accurately learning the underlying partial di↵er-

13

3.2. The KdV equation

As a mathematical model of waves on shallow water surfaces one could
consider the Korteweg-de Vries (KdV) equation. The KdV equation reads as

u

t

= �uu

x

� u

xxx

. (6)

To obtain a set of training data we simulate the KdV equation (6) using
conventional spectral methods. In particular, we start from an initial con-
dition u(0, x) = � sin(⇡x/20), x 2 [�20, 20] and assume periodic boundary
conditions. We integrate equation (6) up to the final time t = 40. We use the
Chebfun package [43] with a spectral Fourier discretization with 512 modes
and a fourth-order explicit Runge-Kutta temporal integrator with time-step
size 10�4. The solution is saved every �t = 0.2 to give us a total of 201
snapshots. Out of this data-set, we generate a smaller training subset, scat-
tered in space and time, by randomly sub-sampling 10000 data points from
time t = 0 to t = 26.8. In other words, we are sub-sampling from the orig-
inal dataset only in the training portion of the domain from time t = 0 to
t = 26.8. Given the training data, we are interested in learning N as a
function of the solution u and its derivatives up to the 3rd order6; i.e.,

u

t

= N (u, u
x

, u

xx

, u

xxx

). (7)

We represent the solution u by a 5-layer deep neural network with 50 neurons
per hidden layer. Furthermore, we letN to be a neural network with 2 hidden
layers and 100 neurons per hidden layer. These two networks are trained by
minimizing the sum of squared errors loss of equation (3). To illustrate the ef-

6 A detailed study of the choice of the order is provided in section 3.1 for the Burgers’
equation.

1st order 2nd order 3rd order 4th order
Relative L

2-error 1.14e+00 1.29e-02 3.42e-02 5.54e-02

Table 2: Burgers’ equation: Relative L

2-error between solutions of the Burgers’ equa-
tion and the learned partial di↵erential equation as a function of the highest order
of spatial derivatives included in our formulation. For instance, the case correspond-
ing to the 3rd order means that we are looking for a nonlinear function N such that
u

t

= N (u, u

x

, u

xx

, u

xxx

). Here, the total number of training data as well as the neural
network architectures are kept fixed and the data are assumed to be noiseless.

12

Example:

Systems identification (PDEs)

Systems identification (ODEs)

0 10 20

t

�2

�1

0

1

2

x
,
y

Trajectories

x y learned model

�1 0 1 2

x

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

y

Phase Portrait

(x, y)

Figure 1: Harmonic Oscillator: Trajectories of the two-dimensional damped harmonic
oscillator with cubic dynamics are depicted in the left panel while the corresponding phase
portrait is plotted in the right panel. Solid colored lines represent the exact dynamics while
the dashed black lines demonstrate the learned dynamics. The identified system correctly
captures the form of the dynamics and accurately reproduces the phase portrait.

behavior stems from a closer inspection of equation 2. Specifically, the ar-
rangement of the resulting terms for the Adams-Moulton schemes leads to a
higher throughput of training data flowing through the neural network during
model training as compared to the Adams-Bashforth and BDF cases. This
helps regularize the neural network and eventually achieve a better calibra-
tion during training. Also, out of the Adams-Moulton family, the trapezoidal
rule seems to work the best in practice perhaps due to its superior stability
properties [18]. These performance characteristics should be interpreted as
product of empirical evidence, and not as concrete theoretical properties of
the method. Identification of the latter requires more extensive systematic
studies that go beyond the scope of this paper.

In tables 3 and 4, we study the robustness of our results with respect
to the gap �t between pairs of data and with respect to noise in the ob-
servations of the system. These results fail to reveal a consistent pattern as
larger time-step sizes �t and larger noise corruption levels sometimes lead to
superior accuracy and other times to inferior. In the latter cases, the reasons

6

where

yn :=
MX

m=0

[↵mxn�m +�t�mf(xn�m)] , n = M, . . . , N, (5)

is obtained from the multistep scheme (2).

3. Results

3.1. Two-dimensional damped oscillator

As a first illustrative example, let us consider the two-dimensional damped
harmonic oscillator with cubic dynamics; i.e.,

ẋ = �0.1 x

3 + 2.0 y

3
,

ẏ = �2.0 x

3 � 0.1 y

3
.

(6)

We use [x0 y0]T = [2 0]T as initial condition and collect data from t = 0 to
t = 25 with a time-step size of �t = 0.01. The data are plotted in figure
1. We employ a neural network with one hidden layer and 256 neurons to
represent the nonlinear dynamics. As for the multistep scheme (2) we use
Adams-Moulton with M = 1 steps (i.e., the trapezoidal rule). Upon train-
ing the neural network, we solve the identified system using the same initial
condition as the one above. Figure 1 provides a qualitative assessment of
the accuracy in identifying the correct nonlinear dynamics. Specifically, by
comparing the exact and predicted trajectories of the system, as well as the
resulting phase portraits, we observe that the algorithm can correctly cap-
ture the dynamic evolution of the system.

To investigate the performance of the proposed work-flow with respect
to di↵erent linear multi-step methods, we have considered the three families
that are most commonly used in practice: Adams-Bashforth (AB) methods,
Adams-Moulton (AM) methods, and the backward di↵erentiation formulas
(BDFs). In tables 1 and 2, we report the relative L2 error between tra-
jectories of the exact and the identified systems for di↵erent members of
the class of linear multi-step methods. Interestingly, the Adams-Moulton
scheme seems to consistently return more accurate results compared to the
Adams-Bashforth and BDF approaches. One intuitive explanation for this

5

Figure 1: Harmonic Oscillator: Trajectories of the two-dimensional damped harmonic
oscillator with cubic dynamics are depicted in the left panel while the corresponding phase
portrait is plotted in the right panel. Solid colored lines represent the exact dynamics while
the dashed black lines demonstrate the learned dynamics. The identified system correctly
captures the form of the dynamics and accurately reproduces the phase portrait.

behavior stems from a closer inspection of equation 2. Specifically, the ar-
rangement of the resulting terms for the Adams-Moulton schemes leads to a
higher throughput of training data flowing through the neural network during
model training as compared to the Adams-Bashforth and BDF cases. This
helps regularize the neural network and eventually achieve a better calibra-
tion during training. Also, out of the Adams-Moulton family, the trapezoidal
rule seems to work the best in practice perhaps due to its superior stability
properties [18]. These performance characteristics should be interpreted as
product of empirical evidence, and not as concrete theoretical properties of
the method. Identification of the latter requires more extensive systematic
studies that go beyond the scope of this paper.

In tables 3 and 4, we study the robustness of our results with respect
to the gap �t between pairs of data and with respect to noise in the ob-
servations of the system. These results fail to reveal a consistent pattern as
larger time-step sizes �t and larger noise corruption levels sometimes lead to
superior accuracy and other times to inferior. In the latter cases, the reasons

6

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2018). Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems. arXiv preprint

2. Problem setup and solution methodology

Let us consider nonlinear dynamical systems of the form1

d

dt

x(t) = f (x(t)) , (1)

where the vector x(t) 2 RD denotes the state of the system at time t and the
function f describes the evolution of the system. Given noisy measurements
of the state x(t) of the system at several time instances t1, t2, . . . , tN , our
goal is to determine the function f and consequently discover the underlying
dynamical system (1) from data. We proceed by applying the general form
of a linear multistep method with M steps to equation (1) and obtain

MX

m=0

[↵mxn�m +�t�mf(xn�m)] = 0, n = M, . . . , N. (2)

Here, xn�m denotes the state of the system x(tn�m) at time tn�m. Di↵erent
choices for the parameters ↵m and �m result in specific schemes. For instance,
the trapezoidal rule

xn = xn�1 +
1

2
�t (f(xn) + f(xn�1)) , n = 1, . . . , N, (3)

corresponds to the case where M = 1, ↵0 = �1, ↵1 = 1, and �0 = �1 =
0.5. We proceed by placing a neural network prior on the function f . The
parameters of this neural network can be learned by minimizing the mean
squared error loss function

MSE :=
1

N �M + 1

NX

n=M

|yn|2, (4)

1It is straightforward to generalize the dynamics to include parameterization, time
dependence, and forcing. In particular, parameterization, time dependence, and external
forcing or feedback control u(t) may be added to the vector field according to

ẋ = f (x,u, t; �) , ṫ = 1, �̇ = 0.

4

2. Problem setup and solution methodology

Let us consider nonlinear dynamical systems of the form1

d

dt

x(t) = f (x(t)) , (1)

where the vector x(t) 2 RD denotes the state of the system at time t and the
function f describes the evolution of the system. Given noisy measurements
of the state x(t) of the system at several time instances t1, t2, . . . , tN , our
goal is to determine the function f and consequently discover the underlying
dynamical system (1) from data. We proceed by applying the general form
of a linear multistep method with M steps to equation (1) and obtain

MX

m=0

[↵mxn�m +�t�mf(xn�m)] = 0, n = M, . . . , N. (2)

Here, xn�m denotes the state of the system x(tn�m) at time tn�m. Di↵erent
choices for the parameters ↵m and �m result in specific schemes. For instance,
the trapezoidal rule

xn = xn�1 +
1

2
�t (f(xn) + f(xn�1)) , n = 1, . . . , N, (3)

corresponds to the case where M = 1, ↵0 = �1, ↵1 = 1, and �0 = �1 =
0.5. We proceed by placing a neural network prior on the function f . The
parameters of this neural network can be learned by minimizing the mean
squared error loss function

MSE :=
1

N �M + 1

NX

n=M

|yn|2, (4)

1It is straightforward to generalize the dynamics to include parameterization, time
dependence, and forcing. In particular, parameterization, time dependence, and external
forcing or feedback control u(t) may be added to the vector field according to

ẋ = f (x,u, t; �) , ṫ = 1, �̇ = 0.

4

Layers
Neurons

64 128 256

1 9.8e-03 6.1e-03 3.7e-02
2 3.6e-03 1.2e-02 2.4e-02
3 3.4e-03 1.6e-02 4.2e-02

Table 5: Harmonic Oscillator: Relative L2 error between the predicted and the exact
trajectory for the first dynamic component x(t) integrated up to time t = 25, for di↵erent
neural network architectures. Here, the training data is assumed to be noise free, the time
step size is kept fixed at �t = 0.01, and the number of Adams-Moulton steps is fixed at
M = 1.

Layers
Neurons

64 128 256

1 7.2e-03 5.4e-03 3.5e-02
2 3.3e-03 9.1e-03 2.0e-02
3 3.0e-03 1.4e-02 3.7e-02

Table 6: Harmonic Oscillator: Relative L2 error between the predicted and the exact
trajectory for the second dynamic component y(t) integrated up to time t = 25, for
di↵erent neural network architectures. Here, the training data is assumed to be noise free,
the time step size is kept fixed at �t = 0.01, and the number of Adams-Moulton steps is
fixed at M = 1.

3.2. Lorenz system

To explore the identification of chaotic dynamics evolving on a finite
dimensional attractor, we consider the nonlinear Lorenz system [22]

ẋ = 10(y � x),
ẏ = x(28� z)� y,

ż = xy � (8/3)z.
(7)

We use [x0 y0 z0]T = [�8 7 27]T as initial condition and collect data from
t = 0 to t = 25 with a time-step size of �t = 0.01. The data are plotted in
figures 2 and 3. We employ a neural network with one hidden layer and 256
neurons to represent the nonlinear dynamics. As for the multistep scheme
(2) we use Adams-Moulton with M = 1 steps (i.e., the trapezoidal rule).
Upon training the neural network, we solve the identified system using the
same initial condition as the one above. As depicted in figure 2, the learned
system correctly captures the form of the attractor.

9

Figure 2: Lorenz System: The exact phase portrait of the Lorenz system (left panel) is
compared to the corresponding phase portrait of the learned dynamics (right panel).

The Lorenz system has a positive Lyapunov exponent, and small di↵er-
ences between the exact and learned models grow exponentially, even though
the attractor remains intact. This behavior is evident in figure 3, as we com-
pare the exact versus the predicted trajectories. Small discrepancies due to
finite accuracy in the predicted dynamics lead to large errors in the fore-
casted time-series after t > 4, despite the fact that the bi-stable structure of
the attractor is well captured (see figure 2).

3.3. Fluid flow behind a cylinder

In this example we collect data for the fluid flow past a cylinder (see fig-
ure 4) at Reynolds number 100 using direct numerical simulations of the two
dimensional Navier-Stokes equations. In particular, following the problem
setup presented in [23] and [24], we simulate the Navier-Stokes equations de-
scribing the two-dimensional fluid flow past a circular cylinder at Reynolds
number 100 using the Immersed Boundary Projection Method [25, 26]. This
approach utilizes a multi-domain scheme with four nested domains, each suc-
cessive grid being twice as large as the previous one. Length and time are
non-dimensionalized so that the cylinder has unit diameter and the flow has
unit velocity. Data is collected on the finest domain with dimensions 9⇥4 at
a grid resolution of 449⇥ 199. The flow solver uses a 3rd-order Runge Kutta

10

0 5 10 15 20 25

t

�10

0

10

x

0 5 10 15 20 25

t

�20

0

20

y

0 5 10 15 20 25

t

20

40

z

Exact Dynamics Learned Dynamics

Figure 3: Lorenz System: The exact trajectories of the Lorenz systems is compared to the
corresponding trajectories of the learned dynamics. Solid blue lines represent the exact
dynamics while the dashed black lines demonstrate the learned dynamics.

integration scheme with a time step of t = 0.02, which has been verified to
yield well-resolved and converged flow fields. After simulations converge to
steady periodic vortex shedding, flow snapshots are saved every �t = 0.02.
We then reduce the dimension of the system by proper orthogonal decompo-
sition (POD) [27, 16]. The POD results in a hierarchy of orthonormal modes
that, when truncated, capture most of the energy of the original system for
the given rank truncation. The first two most energetic POD modes capture
a significant portion of the energy; the steady-state vortex shedding is a limit

11

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2018). Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems. arXiv preprint

Systems identification (ODEs)

x

�20

0

20

y�40

0

40

z

0

25

50

Exact Dynamics

x

�20

0

20

y�40

0

40

z

0

25

50

Learned Dynamics

Figure 2: Lorenz System: The exact phase portrait of the Lorenz system (left panel) is
compared to the corresponding phase portrait of the learned dynamics (right panel).

The Lorenz system has a positive Lyapunov exponent, and small di↵er-
ences between the exact and learned models grow exponentially, even though
the attractor remains intact. This behavior is evident in figure 3, as we com-
pare the exact versus the predicted trajectories. Small discrepancies due to
finite accuracy in the predicted dynamics lead to large errors in the fore-
casted time-series after t > 4, despite the fact that the bi-stable structure of
the attractor is well captured (see figure 2).

3.3. Fluid flow behind a cylinder

In this example we collect data for the fluid flow past a cylinder (see fig-
ure 4) at Reynolds number 100 using direct numerical simulations of the two
dimensional Navier-Stokes equations. In particular, following the problem
setup presented in [23] and [24], we simulate the Navier-Stokes equations de-
scribing the two-dimensional fluid flow past a circular cylinder at Reynolds
number 100 using the Immersed Boundary Projection Method [25, 26]. This
approach utilizes a multi-domain scheme with four nested domains, each suc-
cessive grid being twice as large as the previous one. Length and time are
non-dimensionalized so that the cylinder has unit diameter and the flow has
unit velocity. Data is collected on the finest domain with dimensions 9⇥4 at
a grid resolution of 449⇥ 199. The flow solver uses a 3rd-order Runge Kutta

10

Summary

Data Models

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t

�5

0

5

x

|h(t, x)|
Data (150 points)

0.5
1.0
1.5
2.0
2.5
3.0
3.5

�5 0 5

x

0

5

|h(
t
,
x
)|

t = 0.59

�5 0 5

x

0

5

|h(
t
,
x
)|

t = 0.79

Exact Prediction

�5 0 5

x

0

5

|h(
t
,
x
)|

t = 0.98

Figure 1: Shrödinger equation: Top: Predicted solution |h(t, x)| along with the initial and
boundary training data. In addition we are using 20,000 collocation points generated using
a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact
solutions corresponding to the three temporal snapshots depicted by the dashed vertical
lines in the top panel. The relative L2 error for this case is 1.97 · 10�3.

neural network can accurately capture the intricate nonlinear behavior of the230

Schrödinger equation.231

232

One potential limitation of the continuous time neural network models233

considered so far stems from the need to use a large number of colloca-234

tion points N

f

in order to enforce physics-informed constraints in the en-235

tire spatio-temporal domain. Although this poses no significant issues for236

problems in one or two spatial dimensions, it may introduce a severe bot-237

tleneck in higher dimensional problems, as the total number of collocation238

points needed to globally enforce a physics-informed constrain (i.e., in our239

case a partial di↵erential equation) will increase exponentially. Although240

this limitation could be addressed to some extend using sparse grid or quasi241

Monte-Carlo sampling schemes [41, 42], in the next section, we put forth a242

di↵erent approach that circumvents the need for collocation points by in-243

9

Data-driven solution of differential equations Data-driven discovery of differential equations

�15 �10 �5 0 5 10 15 20 25

x

�5

0

5

y

Vorticity

�3

�2

�1

0

1

2

3

x

t

y

u(t, x, y)

x

t

y

v(t, x, y)

Figure 3: Navier-Stokes equation: Top: Incompressible flow and dynamic vortex shedding
past a circular cylinder at Re = 100. The spatio-temporal training data correspond to
the depicted rectangular region in the cylinder wake. Bottom: Locations of training data-
points for the the stream-wise and transverse velocity components, u(t, x, y) and v(t, x, t),
respectively.

414

A more intriguing result stems from the network’s ability to provide a415

qualitatively accurate prediction of the entire pressure field p(t, x, y) in the416

absence of any training data on the pressure itself. A visual comparison417

against the exact pressure solution is presented in figure 4 for a represen-418

tative pressure snapshot. Notice that the di↵erence in magnitude between419

the exact and the predicted pressure is justified by the very nature of the420

incompressible Navier-Stokes system, as the pressure field is only identifiable421

up to a constant. This result of inferring a continuous quantity of interest422

from auxiliary measurements by leveraging the underlying physics is a great423

example of the enhanced capabilities that physics-informed neural networks424

17

Predictive Intelligence Lab
at the University of Pennsylvania

Email: pgp@seas.upenn.edu
Acknowledgements:
• Maziar Raissi (Brown University)
• George Karniadakis (Brown University) Code: https://github.com/PredictiveIntelligenceLab

mailto:pgp@seas.upenn.edu?subject=
https://github.com/PredictiveIntelligenceLab

