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Nonlinear Lattice

Discrete Solitons

Discrete solitons were first suggested by Davydov in alpha-helix proteins. This model
attempted to explain some fundamental issues in biophysics such as for example storage
of phonon energy in proteins.

i~ dΨn
dt + J(Ψn+1 −Ψn−1) + σ |Ψn|2 Ψn = 0
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Nonlinear Lattice

Integrable vs Non-integrable lattices

sine-Gordon (Integrable) VS Discrete SG (non-integrable)

utt − uxx = Γsinu, vs ün = un+1 − 2un + un−1 + Γsinun

NSL (intgrable) VS Ablowitz-Ladik lattice (Integrable)/DNLS (non-integrable)

iut = 2|u|2u + uxx

VS
iu̇n = |un|2(un+1 + un−1) +

1
h2 (un+1 − 2un + un−1)

and
iu̇n = 2un|un|2 +

1
h2 (un+1 − 2un + un−1)
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Klein-Gordon Lattice

Klein-Gordon Lattice

Klein-Gordon (KG) lattice models a chain of coupled anharmonic oscillators with
nearest-neighbour interactions

ün + V ′(un) = ε(un−1 − 2un + un+1).

where {un(t)}n∈Z : R→ RZ, dot represents time derivative, ε is the coupling constant,
and V : R→ R is an on-site potential.

ε εε εε εε

Applications:
• dislocations in crystals (e.g. Frenkel & Kontorova 1938)
• oscillations in biological molecules (e.g. Peyrard & Bishop 1989)
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Klein-Gordon Lattice

Anharmonic oscillator

We make the following assumptions:
• V (u) = u2 ± u4 +O(u5), where +/ corresponds to hard/soft potential;
• 0 < ε� 1: oscillators are weakly coupled.

In the anti-continuum limit (ε = 0), each oscillator is governed by

ϕ̈+ V ′(ϕ) = 0, ⇒ 1
2
ϕ̇2 + V (ϕ) = E ,

where ϕ ∈ H2
per (0,T ). Period of oscillations T is uniquely defined by the energy level E ,

according to the following formula:

T =
√

2
∫ a

−a

dϕ√
E − V (ϕ)

.
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Klein-Gordon Lattice

Multi-breathers in the anti-continuum limit

Breathers are spatially localized time-periodic solutions to the Klein-Gordon lattice.
Multi-breathers are constructed by parameter continuation in ε from ε = 0. For ε = 0 we
take

u(0)(t) =
∑
k∈S

σkϕ(t)ek ∈ l2
(
Z,H2

per (0,T )
)
,

where S ⊂ Z is the set of excited sites and ek is the unit vector in l2(Z) at the node k .
The oscillators are in phase if σk = +1 and out-of-phase if σk = 1.

Theorem (MacKay & Aubry 1994)
Fix the period T 6= 2πn, n ∈ N and the T -periodic solution ϕ ∈ H2

per (0,T ) of the
anharmonic oscillator equation for T (E) 6= 0. There exist ε0 > 0 and C > 0 such that
∀ε(ε0, ε0) there exists a solution u(ε) ∈ l2 (Z,H2

per (0,T )
)
, of the Klein-Gordon lattice

satisfying ∥∥∥u(ε) − u(0)
∥∥∥

l2(Z,H2
per (0,T ))

≤ Cε
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Klein-Gordon Lattice

Floquet Multipliers

Linearize about the breather solution to the dKG by replacing u with u+w, where
w : R→ RZ is a small perturbation, and collect the terms linear in w:

ẅn + V ′′(un)wn = ε (wn+1 − 2wn + wn−1) , n ∈ Z

In the anti-continuum limit, it is easy to find the Floquet multipliers:
• on ”holes” n ∈ Z \ S,

ẅn + wn = 0,
(
wn(T )
ẇn(T )

)
=

(
cos T sin T
− sin T cos T

)(
wn(0)
ẇn(0)

)
,

Floquet multipliers are µ1,2 = e±iT

• on excited sites, n ∈ S,

ẅn + V ′′(ϕ)wn = 0,
(
wn(T )
ẇn(T )

)
=

(
1 0

T ′(E)(V ′(a))2 1

)(
wn(0)
ẇn(0)

)
,

Floquet multipliers are µ1,2 = 1 of geometric multiplicity 1 and algebraic multiplicity
2.
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Klein-Gordon Lattice

Floquet Exponent

A Floquet multiplier µ can be written as µ = eλT

Theorem (Pelinovsky ’12)
For small ε > 0 the linearized stability problem has 2M small Floquet exponents
λ = εN/2Λ + O

(
ε(N+1)/2

)
, where λ is determined from the eigenvalue problem

− T (E)2

2T ′(E)KN
Λ2c = Sc, c ∈ CM

with S ∈ RM×M is a tridiagonal matrix with elements

Si,j = −σj (σj−1 + σj+1) δi,j + δi,j−1 + δi,j+1, 1 ≤ i, j ≤ M,

and KN is defined by

KN =

∫ T

0
ϕ̇(t)ϕ̇N−1(t)dt ,

(
∂2

t + 1
)
ϕk = ϕk−1, ϕ0 = ϕ.
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Klein-Gordon Lattice

Stability of Multi-breathers

Sandstede (1998) showed that the matrix S has exactly n0 positive and M − 1− n0

negative eigenvalues in addition to the simple zero eigenvalue, where n0 =(sign changes
in n). Hence, stability of multibreathers is determined by the sign T ′(E)KN(T ) and the
phase parameters {σk}M−1

k=1 .

Theorem
If T ′(E)KN(T ) > 0 the linearized problem for the multibreathers has exactly n0 pairs of
”stable” Floquet exponents and M − 1− n0 pairs of ”unstable” Floquet exponents
counting their multiplicities. If T ′(E)KN(T ) < 0 the conclusion changes to the opposite.
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Klein-Gordon chain with long range interactions (LRI)

KG with LRI
The picture radically changes when the chain involves interactions with range longer than
mere nearest neighbors. The range parameter r will be used to indicate the interaction
length between the oscillators of the chain. The next nearest neighbor (NNN) chain the
range is r = 2. The coupling force between the oscillators of the chain is linear and the
coupling constants εi , i = 1 . . . r are not, in general, equal.

ε εε εε εε1 1 1 1 εε1

εε2 εε2εε2εε2

The Hamiltonian of a 1D KG chain with long range interactions is:

H =
∞∑

i=−∞

[
p2

i

2
+ V (xi )] +

1
2

∞∑
i=−∞

r∑
j=1

εj (xi − xi+j )
2 (4.1)

which leads to the equations of motion

ẍi = −V ′(xi ) +
r∑

j=1

εj (xi−j − 2xi + xi+j )
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Klein-Gordon chain with long range interactions (LRI)

3-site breathers with r = 2
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Figure: [Color online] Two snapshots of a 3-site (n = 2), anti-phase (φ1 = φ2 = π) multibreather
in a range r = 2 Klein-Gordon chain with ε1 = ε2 = 0.02 and frequency w = 2π/7.
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Klein-Gordon chain with long range interactions (LRI)
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Figure: [Color online] Three snapshots of a 3-site (n = 2), phase-shift (φ1 = φ2 6= 0, π)
multibreather in a range r = 2 Klein-Gordon chain with ε1 = ε2 = 0.02 and frequency w = 2π/7.
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Discrete Breathers in magnetic metamaterials

Nonlinear Magnetic Metamaterials

Lazarides et al PRL97 (2006) studied the discrete breathers in Nonlinear Megnetic
Metamaterials, described by a dissipative lattice equation.
They consider a planar 1D array of N identical split-ring resonator (SSR) with their axes
prependicular to the plane. The dynamics of charge qn and the current in circulating in
the nth SSR is described by

q̈n + V ′(qn) = ε(q̈n+1 + q̈n−1) + γq̇n − f (t) (5.1)

with loss coefficient γ, coupling parameter ε, external forcing f .
We investigate the existence of small periodic solutions of system (7.5) with and without
periodic forcing, and the bifurcation of periodic solutions of (7.5) with small γ, λ and f .
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Discrete Breathers in magnetic metamaterials

The NMM lattice can be written as

q̈n + V ′(qn) = ε(q̈n+1 + q̈n−1), n ∈ Z, (5.2)

where t ∈ R is the evolution time, qn(t) ∈ R is the normalized charge stored in the
capacitor of the n-th split-ring resonator, V : R→ R is a smooth on-site potential for the
voltage across the slit of the n-th resonator, and ε > 0 is the coupling constant from the
mutual inductance. In particular, the voltage u = f (q) = V ′(q) is found by inverting the
charge-voltage dependence near small charge:

q = u + αu3 ⇒ u = f (q) = q − αq3 +O(q5) as q → 0, (5.3)

where self-focusing (α > 0) or self-defocusing (α < 0) nonlinearity, correspond to the
soft and hard potentials V respectively, for sufficiently small values of q. Note that
V (−q) = V (q) for the potential defined by (5.3).
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Discrete Breathers in magnetic metamaterials

Focus on

• consider spectral stability of multi-site discrete breathers in the limit of small
coupling constant ε. This limit is referred usually as the anti-continuum limit.

• Existence of periodic travelling wave solutions and Bifurcation results for periodic
travelling waves for perturbed NNM lattice.
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Existence of Multi-site Discrete Breathers in NMM lattice

Formalism

We set up the NMM lattice as an evolution in t in the phase space C2([0,T ), l2(Z)),
T > 0 is the maximal existence time (which may be infinite).
Let us define the bounded operator

M(ε) = I − ε(σ+ + σ−) : l2(Z)→ l2(Z),

where the shift operators σ± : l2(Z)→ l2(Z) are defined by

(σ±q)n = qn±1, n ∈ Z. (6.1)

For any ε ∈
(
− 1

2 ,
1
2

)
, the operator M(ε) : l2(Z)→ l2(Z) is diagonally dominant and

hence invertible and the inverse operator M−1(ε) : l2(Z)→ l2(Z) is bounded. Moreover,
the operator M−1(ε) is analytic at ε = 0 and admits the Taylor series,

M−1(ε) = I +
∞∑

k=1

εk (σ+ + σ−)k , ε ∈
(
−1

2
,

1
2

)
. (6.2)
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Existence of Multi-site Discrete Breathers in NMM lattice

As a result, the evolution problem of the discrete Klein–Gordon equation can be
formulated in the abstract form

d2q
dt2 + M−1(ε)f(q) = 0, (6.3)

where (f(q))n = V ′(qn).

Theorem (Rothos & Pelinosky, ’14)
Let V ∈ C2(R) and q0,q1 ∈ l2(Z). For any ε ∈

(
− 1

2 ,
1
2

)
, there exist T > 0 and a local

solution of the evolution problem (6.3) in the phase space q ∈ C2([0,T ), l2(Z)) such that
q(0) = q0 and q̇(0) = q1.
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Existence of Multi-site Discrete Breathers in NMM lattice

Multi-breathers are constructed by parameter continuation in ε from ε = 0. For ε = 0 we
take

Q(0)(t) =
∑
k∈S

σkϕ(t)ek ∈ l2
(
Z,H2

per (0,T )
)
, (6.4)

where S ⊂ Z is the set of excited sites and ek is the unit vector in l2(Z) at the node k .
The oscillators are in phase if σk = +1 and out-of-phase if σk = 1.
In the anti-continuum limit (ε = 0), each oscillator is governed by

ϕ̈+ V ′(ϕ) = 0, ⇒ 1
2
ϕ̇2 + V (ϕ) = E ,

where ϕ ∈ H2
per (0,T ). The unique even solution ϕ(t) satisfies the initial condition,

ϕ(0) = a, ϕ̇(0) = 0, (6.5)

where a is the smallest positive root of V (a) = E for a fixed value of E . Period of
oscillations T is uniquely defined by the energy level E , according to the following
formula:

T =
√

2
∫ a

−a

dϕ√
E − V (ϕ)

. (6.6)
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Existence of Multi-site Discrete Breathers in NMM lattice

Theorem (Rothos & Pelinosky, ’14)
Fix the period T and the solution ϕ ∈ H2

e (0,T ) of the nonlinear oscillator equation (??)
with an even function V ∈ C∞(R) such that V ′′(0) = 1. Assume that T 6= 2πn, n ∈ N
and T ′(E) 6= 0. Define Q(0) by the representation (6.4) with fixed finite S ⊂ Z and
{σk}k∈S . There are ε0 ∈

(
0, 1

2

)
and C > 0 such that for all ε ∈ (−ε0, ε0), there exists a

unique solution Q(ε) ∈ H2
e ((0,T ), l2(Z)) of the discrete Klein–Gordon equation (5.2)

satisfying
‖Q(ε) −Q(0)‖H2

per((0,T ),l2(Z)) ≤ C|ε|. (6.7)

Moreover, the map (−ε0, ε0) 3 ε 7→ Q(ε) ∈ H2
e ((0,T ), l2(Z)) is C∞.
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Stability of Discrete Breathersin NMM lattice

Floquet Multipliers

Linearize about the breather solution to the NMM by replacing q(t) with Q(t) + w(t)
Using the abstract evolution form (6.3) and the decomposition M−1(ε) = I + εK (ε), we
can rewrite the linearized equations of KG-lattice in the equivalent form:

d2w
dt2 + f′(Q)w = −εK (ε)f′(Q)w, (7.1)

where f′(Q) is the diagonal operator with entries V ′′(Qn), n ∈ Z.
Q(t + T ) = Q(t), an infinite-dimensional analogue of the Floquet theorem applies and
the Floquet monodromy matrixM is defined by w(T ) =Mw(0).
The breather is stable if all eigenvalues ofM, called Floquet multipliers, are located on
the unit circle and it is unstable if there is at least one Floquet multiplier outside the unit
disk.
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Stability of Discrete Breathersin NMM lattice

Floquet multipliers µ = eλT are found from solutions W ∈ H2
per((0,T ), l2(Z)) of

d2W
dt2 + 2λ

dW
dt

+ λ2W + f′(Q)W = −εK (ε)f′(Q)W. (7.2)

Floquet multiplier µ = 1 corresponds to the characteristic exponent λ = 0. The
generalized eigenvector Z0 ∈ H2

per((0,T ), l2(Z)) of the eigenvalue problem (7.2) for λ = 0
solves the inhomogeneous problem,

d2Z0

dt2 + f′(Q)Z0 = −εK (ε)f′(Q)Z0 − 2
dW0

dt
, (7.3)

where W0 is the eigenvector of (7.2) for λ = 0. To normalize Z0 uniquely, we add a
constraint that Z0 is orthogonal to W0 with respect to the inner product

〈W0,Z0〉L2
per((0,T ),l2(Z)) :=

∫ T

0

∑
n∈Z

(Z̄0)n(t)(W0)n(t)dt .
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Stability of Discrete Breathersin NMM lattice

Theorem (Pelinovsky & Rothos’14)
Under assumptions of Proposition 5, let Q(0) =

∑N
k=1 σkϕek and Q(ε) ∈ H2

e ((0,T ), l2(Z))
be the corresponding solution of the discrete Klein–Gordon equation (5.2) for small
ε > 0. Then the eigenvalue problem (7.2) for small ε > 0 has 2N small eigenvalues,

λ = ε1/2Λ +O(ε),

where Λ is an eigenvalue of the matrix eigenvalue problem

T 2(E)

T ′(E)M1
Λ2c = Sc, c ∈ CN . (7.4)
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Stability of Discrete Breathersin NMM lattice

Theorem cont.

Here the numerical coefficient M1 is given by

M1 =

∫ T

0
ϕ̈2dt > 0

and the matrix S ∈ MN×N is given by

S =



−σ1σ2 1 0 . . . 0 0
1 −σ2(σ1 + σ3) 1 . . . 0 0
0 1 −σ3(σ2 + σ4) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −σM−1(σM−2 + σM ) 1
0 0 0 . . . 0 −σMσM−1


.
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Stability of Discrete Breathersin NMM lattice

Travelling Waves in Nonlinear Magnetic Metamaterials
Lattice

Lazarides et al PRL97 (2006) studied the discrete breathers in Nonlinear Megnetic
Metamaterials, described by a dissipative lattice equation.
They consider a planar 1D array of N identical split-ring resonator (SSR) with their axes
prependicular to the plane. The dynamics of charge qn and the current in circulating in
the nth SSR is described by

dqn

dt
= in, n ∈ Z

d
dt

(λin−1 − in + λin+1) = γin − f (t) + (qn)

(7.5)

with loss coefficient γ, coupling parameter λ, external forcing f and nonlinear function .
We investigate the existence of small periodic solutions of system (7.5) with periodic
forcing, and the bifurcation of periodic solutions of (7.5) with small γ, λ and f .
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Stability of Discrete Breathersin NMM lattice

Existence of small periodic solutions

Consider the equivalent equation

λq̈n+1 − q̈n + λq̈n−1 = γq̇n + (qn) + f cos(ωt + pn) (7.6)

where γ ≥ 0, λ ∈ R, ω > 0, f 6= 0, p 6= 0 are parameters and is an odd analytic function
with radius of convergence ρ > 0 such that D(0) = 0.

qn(t) = U(ωt + pn), U(z + π) = −U(z), z = ωt + pn

ω2(λU ′′(z + p)− U ′′(z) + λU ′′(z − p)) = γωU ′(z) + (U(z)) + f cos z. (7.7)
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Stability of Discrete Breathersin NMM lattice

Existence of small periodic solutions
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qn(t) = U(ωt + pn), U(z + π) = −U(z), z = ωt + pn
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Stability of Discrete Breathersin NMM lattice

We consider the associated Banach spaces and we rewrite the equation (7.7) as

KU = F(U, f )

KU := ω2(λU ′′(z + p)− U ′′(z) + λU ′′(z − p))− γωU ′(z), F(U, f ) := (U) + f cos z,

Theorem (VR et al, 2012)
Assume

Θ := inf
k∈Z

√
ω4(2k + 1)2 (2λ cos(2k + 1)p − 1)2 + γ2ω2 > 0 (7.8)

along with |f | < |fl | for fl satisfying

A(r) := Θr −
∞∑

k=3

|Dk (0)|
k !

r k = |fl |, A′(r) = 0. (7.9)

for some r ∈ (0, ρ). Then equation (7.7) has a unique solution U(f ) ∈ B(ρf ) in a closed
ball where ρf < ρ is the smallest positive root of A(r) = |f |. Moreover, U(f ) can be
approximated by an iteration process.
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Stability of Discrete Breathersin NMM lattice
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Figure: Time evolution of a one-site dissipative breather during approximatelly two periods for
Tb = 6.82, λ = 0.02, γ = 0.01, ε0 = 0.04, α = +1, εl = 2 and N = 50. (Lazaridis et al, PRL
2006)
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Stability of Discrete Breathersin NMM lattice

Dissipative Breathers

0 

7

14

0

25

50

−2

0

2

tn

i
n

−1.5

−1

−0.5

0

0.5

1

1.5

0 

7

14 0 

25

50−2

−1

0

1

2

nt

i
n

−1.5

−1

−0.5

0

0.5

1

1.5

Figure: Time evolution of a one-site dissipative breather during approximatelly two periods for
Tb = 6.82, λ = 0.02, γ = 0.01, ε0 = 0.04, α = +1, εl = 2 and N = 50. (Lazaridis et al, PRL
2006)
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Stability of Discrete Breathersin NMM lattice

Bifurcation Results

Consider (7.5) with small γ, λ and f . So we consider the system

dqn

dt
= in, n ∈ Z

d
dt

(ελin−1 − in + ελin+1) = εγin − εh(ωt + pn) + (qn),

(7.10)

for C2-smooth and 2π-periodic h, ∈ C2(R,R) and ω > 0, p 6= 0, and ε 6= 0 is a small
parameter.
Equation (7.10) implies

(ελq̈n−1 − q̈n + ελq̈n+1) = εγq̇n − εh(ωt + pn) + ϕ(qn). (7.11)

Putting qn(t) = U(ωt + pn) for U ∈ C2(R,R) in (7.11),

ω2U ′′(z) + ϕ(U(z))− ελω2 (U ′′(z − p) + U ′′(z + p)
)

+ εγωU ′(z)− εh(z) = 0. (7.12)
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Stability of Discrete Breathersin NMM lattice

subharmonic Melnikov function

Theorem (VR et al, 2012)
Suppose U ′′(z) + ϕ(U(z)) = 0 has a T -periodic solution U0 and Tω = 2π u

v for u, v ∈ N.
If there is a simple zero α0 of a Melnikov function

Mu/v (α) :=

∫ T

0

(
−γωU ′ω(z) + h(z + α)

)
U ′ω(z)dz, (7.13)

then there is a > 0 such that for any 0 6= ε ∈ (−δ, δ) there is a unique 2πu-periodic
solution U(z) of advance-delay DE with

U(z) = U0

(z − α0

ω

)
+ O(ε).
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Stability of Discrete Breathersin NMM lattice

Theorem (VR et al, 2012)
Suppose ϕ(0) = 0, ϕ′(0) < 0 and U ′′(z) + ϕ(U(z)) = 0 has an asymptotic solution
Γ ∈ C2(R,R) such that lim|z|→∞ Γ(z) = 0 and lim|z|→∞ Γ′(z) = 0. If there is a simple
zero β0 of the Melnikov function

M(β) :=

∫ ∞
−∞

(
−γ′(z) + h(ωz + β)

)′
(z)dz. (7.14)

Then there is a θ > 0 such that for any 0 6= ε ∈ (−θ, θ) there is a unique bounded
solution U(z) of (7.12) on R with

U(z) = Γ

(
z − β0

ω

)
+ O(ε).
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Stability of Discrete Breathersin NMM lattice

Numerical Simulations

To illustrate the theoretical results obtained, we have solved the governing equation, the
advance-delay equation using a pseudo-spectral method. We express the solution U in a
Fourier series

U(z) =
J∑

j=1

[
Aj cos

(
(j − 1)k̃z

)
+ Bj sin

(
j k̃z
)]
, (7.15)

where k̃ = 2π/L and −L/2 < z < L/2. The Fourier coefficients Aj and Bj are then found
by requiring the series to satisfy (7.7) at several collocation points. Hence, 2J collocation
points are required, which are chosen with uniform grid points.
It is important to note that the physically relevant range for the coupling parameter λ is
|λ| < 1/2.
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Stability of Discrete Breathersin NMM lattice
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Figure: (1) An asymptotic travelling wave for a Duffing nonlinearity ϕ = −U + U3, the profile of
an asymptotic wave for λ = γ = f = 0.1, ω = 1 and p = π. The single-hump profile is
accompanied by periodic waves as suggested by Theorem. (2) Continuations of the solution in
previous pic for varying γ (dashed) and f (solid). On the vertical axis is the solution norm
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−L/2 |U|2 dx
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Stability of Discrete Breathersin NMM lattice
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Figure: Time dynamics of the wave shown in 5. One can observe that the travelling wave is
strongly unstable. The hump could only travel for one site before the background becomes
excited and destroys the localised profile. The instability is naturally expected due to the fact
that the zero solution (when there is no drive) forming the background of the asymptotic wave is
unstable, i.e. it is a saddle point. For that reason, we believe that all the branches correspond to
unstable solutions.
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Discrete Sine-Gordon

1 Periodic solutions in advanced-retarded differential equations
• Periodic Boundary Value Problem for functional differential equations.
• Librational and Periodic travelling waves;
• Multiplicity results.

2 Travelling Waves in 2D Lattices: Mathematical Formulation;
3 Applications in travelling waves in nonlinear lattices
4 Travelling Waves in 1D Lattices: Mathematical Formulation;

• Moving Kinks for 1D lattice sine-Gordon
• Numerical Simulations
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Discrete Sine-Gordon

Travelling Waves in 1D Lattice sine-Gordon

Frenkel Kontorova (FK) lattices have been studied as models for atomic chains,
dislocations, charge density waves, magnetic and ferromagnetic domain walls in
condensed matter physics and for parallel coupled one-dimensional Josephson junction
arrays.
The potentials involved are chosen such that the continuum model supports both
stationary and moving defects (kinks or anti-kinks) with topological charge Q = 1. That
is, the kinks connect 0 to 2π (or vice versa) in the usual dimensionless form of potential
adopted in the literature – the so-called sine-Gordon lattice. The discrete sine-Gordon

ün(t) = un+1(t)− 2un(t) + un+1(t)− Γ2sinun(t)

with solutions
• Discrete kinks (stationary solutions)
• Moving discrete kinks un(t) = U(n − vt)
• Discrete Breathers a highly spatially localized, time-periodic, stable (or at least very
long-lived) excitation in a spatially extended.
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Discrete Sine-Gordon

Methodology

• The travelling wave equation of the corresponding dSG is formulated as a
mixed-type differential equation.

• Applying dynamical system methods (center manifold, normal form) we focus on a
4D dynamical system,

• persistence of periodic solutions for the 4D system implies the existence of travelling
waves with non-small amplitude oscillations on infinite nonlinear lattice,

• Analytical results are compared with numerical simulations for a concrete perturbed
discrete nonlinear sine-Gordon equation, (Rothos & Feckan 2005, Aigner,
Champneys & Rothos, 2003).
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Discrete Sine-Gordon
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Discrete Sine-Gordon
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Discrete Sine-Gordon

2D nonlinear lattices

An isotropic two dimensional planar model where rigid molecules rotate in the plane of a
square lattice of spacing a.
At site (n,m) the angle of rotation is un,m each molecule interacts linearly with its first
nearest neighbors and with a nonlinear periodic substrate potential.
The equation of motion of the rotator at site (n,m) is

ün,m = G[un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m] + ω2
0sinun,m

y

n−1

n

n+1

m−1 m m+1

U

U

U

UUm−1,n m,n

m,n−1

m+1,n

m,n+1

a

x

where G the linear coupling coefficient and ω2
0 square of the frequency of small

oscillations in the bottom of the potential wells.
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Discrete Sine-Gordon

Due to the symmetry imposed by the lattice Z2, the existence and speed of a wave
generally will depend on the direction eiθ of motion.
Let θ ∈ R be given, consider solution of lattice

un,m(t) = U(n cos θ + m sin θ − νt)

for some ν ∈ R and U : R→ R.
Mixed-Type functional differential Equation ν 6= 0:

ν2U ′′(z) = U(z + cos θ) + U(z − cos θ) + U(z + sin θ) + U(z − sin θ)

−4U(z)− f (U(z))

with z = n cos θ + m sin θ − νt and U(−∞) = 0, U(+∞) = 2π
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Discrete Sine-Gordon

Theorem (Rothos & Feckan ’07)
For any ω > 16 and 1.17196 < T < 1.7579, 2d discrete sine-Gordon equation

un,m − un+1,m − un−1,m − un,m+1 − un,m−1 + 4un,m + ω sin un,m = 0

possesses 4 nontrivial/nonconstant travelling wave solutions of the form

un,m(t) = π + U
( 1√

2

(
n + m

)
− 1

2
t
)

or U(z) satisfying periodical conditions

U(z + T ) = U(z) + 2π,U(−z) = −U(z),T > 0, or

U(z + T ) = −U(z) + 2π, or U(z + T ) = −U(z), or, U(z + T ) = U(z), U(−z) = −U(z)
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Discrete Sine-Gordon

Theorem (Rothos & Feckan ’07)

1 Let ν > 1 and f ′(0) > 0. Moreover, suppose

e1) ν2 6= gθ
(
π
T k
)

+ T 2

4π2k2 f ′(0) ∀k ∈ N,

e2) #
{

k ∈ N | ν2 < gθ
(
π
T k
)

+ T 2

4π2k2 f ′(0)
}
≥
[

T
√

L

2π
√
ν2−1

]
≥ 2, where

[·] is the integer part function.
Then the advance-delay equation has at least 2 nonzero odd T -periodic solutions.

2 Let ν1 < ν < 1. Then the advance-delay equation for θ = π/4 has infinitely many
odd π/rν-periodic solutions {Un(z)}n∈N with

|Un(z)− cn sin 2rνz| ≤ K̃ |ε|

for cn →∞ as n→∞ and a constant K̃ > 0.
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Discrete Sine-Gordon

Nonlocal Nonlinear Lattice

A nonlinear lattice composed of a finite number of particles coupled by linear springs,
executing in-plane oscillations, and having fixed boundary conditions, (Manevitch and
Vakakis, 2014) demonstrates that the axial oscillations of the particles are an order of
magnitude smaller than the transverse ones in the low-energy limit. This lattice as well as
a granular chain without a pre-compression gives rise to a nonlinear sonic vacuum
without any linear acoustic component, which is a medium with zero speed of sound as
defined in classical acoustics (Nesterenko, 2001).

mU ′′i + (Ti − ξε
′
i ) cosφi − (Ti+1 − ξε

′
i+1) cosφi+1 = 0

mV ′′i + (Ti − ξε
′
i ) sinφi − (Ti+1 − ξε

′
i+1) sinφi+1 − Fi = 0, i = 1,K ,N (9.1)

with Ui ,Vi being the longitudinal and transversal displacements of i-th particle
respectively, φi the angle between th spring and the horizontal direction, ξ the damping
coefficeint, εi = li − l ′i the deformation of i-th spring, Fi the excited transverse force, and

m the mass of each particle of the lattice.
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Discrete Sine-Gordon

Conclusions

. Overview of our recent theoretical and numerical activity in the theme of solitary
nonlinear waves that arise in lattice system.

. The existence of localized traveling waves (sometimes called “moving discrete
breathers” or “discrete solitons”) in Klein-Gordon Lattices and discrete sine-Gordon

. We study the existence and bifurcation of discrete solitons in lattices with local and
nonlocal interactions (Long range interactions).

. LS reduction method, perturbation method, dynamical systems method, topological
and variational methods. Pseudospectral method, Numerical Bifurcation results.

. Application in nonlinear metamaterial lattices, DNA, liquid crystals etc
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Nonlinear Schrödinger Equation (NLS)

NLS: Introduction

The Nonlinear Schrödinger (NLS) equation

iut + uxx + 2σ |u|2 u = 0, where σ = ±1 (10.1)

governs the dynamics of the envelopes of wavepackets in the dispersive media, and arises
in many dierent contexts (nonlinear optics, water waves, etc.)
Zakharov and Shabat published the IST for the NLS equation. Then they extended the
technique (ZS scheme) to some other equations (1973-1974). At about the same time,
Ablowitz, Kaup, Newell and Segur (AKNS) developed an equivalent scheme, which
generalizes the method, described earlier for the KdV equation (AKNS, 1974).
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Nonlinear Schrödinger Equation (NLS)

Lie symmetries of the NLS equation

In the following we use the following one-parameter groups of symmetries, admitted by
the NLS equation (10.1):
• shift in t

t → t + t0, x → x , u → u

• shift in x
t → t , x → x + x0, u → u

• Galilean transformation

t → t , x → x − ct , u → u exp
[
i
c
2

(
x − c

2
t
)]

• scaling
t → a2t , x → ax , u → u

a
For example, if u(x ; t) is a solution of (10.1), then due to the Galilean invariance so are

u(x − ct , t)exp
[
i
c
2

(
x − c

2
t
)]
,

and so on.
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Nonlinear Schrödinger Equation (NLS)

Solitary waves of the NLS equation
We look for a solution of the NLS equation (10.1) of the form

u(x , t) = a(x)eiφ(t), (10.2)

Substituting (10.2) into(10.1), we derive

−aφt + axx + 2σa3 = 0. (10.3)

Separating variables in (10.3) gives φt = axx
a + 2σa2 = const . Then, integrating, we

obtain (up to the scaling and the shift in t):

φ = st

(we can assume that s = ±1), and

axx = −2σa3 + sa. (10.4)

Multiplying (10.4) by ax and integrating, we arrive at

(ax )2 = −σa4 + sa2 + C.

It turns out that the form of solitary waves depends on the sign of (the sign of the
nonlinear term in the NLS equation).
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Nonlinear Schrödinger Equation (NLS)

Focusing NLS: bright solitons

Case I ( σ = 1, focusing NLS in the context of optics-"anomalous dispersion")

iut + uxx + 2 |u|2 u = 0,

In this case, (ax )2 = −a4 + sa2 + C. If a, ax → 0 as x → ±∞, then C = 0, and∫
da

a
√

s − a2
=

∫
dx .

For s = 1 we obtain the simplest form of the so-called bright soliton a = sechx , φ = t ,
yielding u = eit sechx . (Consider the second case,s = −1.) Using the scaling and Galilean
symmetries, we immediately obtain the two-parameter family of bright solitons:

u = AsechA(x − ct)exp
[
i
(

c
2

x + A
(

A2 − c2

4

)
t
)]

.

Note that A and c are independent parameters. (Two more parameters can be added
using shifts in x and t, but these parameters are insignificant.)
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Nonlinear Schrödinger Equation (NLS)
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Nonlinear Schrödinger Equation (NLS)

Defocusing NLS: dark solitons

Case II ( σ = −1, defocusing NLS, in the context of optics-"normal dispersion")

iut + uxx − 2 |u|2 u = 0,

In this case, (ax )2 = a4 + sa2 + C., and solitary waves are rather different from those in
Case I. For s = −1, choosing C = 1/4 (when the polynomial has repeated roots) we
obtain the simplest form of the so-called dark soliton a = 1√

2
tanh x√

2
, φ = −t, yielding

u = e−it 1√
2

tanh
x√
2

(Consider the second case, s = 1.) Again, using symmetries, we obtain the
two-parameter family of dark solitons:

u =
A√
2

tanh
A(x− ct)√

2
exp
[

i
(

c
2

x−
(

A2 +
c2

4

)
t
)]

.
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Nonlinear Schrödinger Equation (NLS)
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Nonlinear Schrödinger Equation (NLS)

Focusing NLS: Breathers

The focusing NLS equation models the evolution of one-dimensional packets of surface
gravity waves on suciently deep water (Zakharov 1968). Recently, there has been
renewed interest in the so-called "breather" solutions of this equation, which have been
suggested as models for so-called "freak" waves (also, "rogue" waves). Loosely speaking,
a "freak" wave is a single wave or a very short- and short-lived group with a significantly
larger steepness than the surrounding waves.
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Nonlinear Schrödinger Equation (NLS)

NLS breather

The first breather type solution for the focusing NLS equation was found by Ma (1979).
Ma solved the IVP for this equation, where the initial condition was a perturbed plane
wave with boundary conditions |q(x , t)| → |q0| as x → ±∞. Ma has found that the
asymptotic state for his problem consisted of a series of breathers (Ma-breathers), given
below, and small dispersive radiation:

uM =
cos (Ωt − 2ik)− cosh(k)cosh(px)

cos (Ωt)− cosh(φ)cosh(px)
e2it

Here, k is the real valued parameter, Ω = 2sinh(2k) and p = 2sinh(k).
Taking the limit k → 0 (i.e. when the breathing period tends to zero), Peregrine (1983)
has obtained

uP = limk→0qM =

[
1− 4(1 + 4it)

1 + 4x2 + 16t2

]
e2it

Other breather-type solutions have been found by Akhmediev et al. (1987) and Ablowitz
and Herbst (1990).
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Nonlinear Schrödinger Equation (NLS)

Figure: The Peregrine breather
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Nonlinear Schrödinger Equation (NLS)

Figure: (A) The Akhmediev breather, (B) the Peregrine breather and (C) the KuznetsovâĂŞMa
breather
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Solutions of NLS equation: existence and stability

Existence

We consider the NLS in abstract form:

iut + ∆u + f (|u|2)u = 0, x ∈ Rn, t ∈ R

with prescribed initial data
u(x , 0) = u0(x)

∆ Laplace operator, smoothness of complex function f (|u|2)u : C→ C. The subsititution
of the general representation for standing waves u(x , t) = eiωtφ(x), ω ∈ R, into the NLS
leads to the stationary equation

∆φ− ωφ+ f (φ2)φ = 0, x ∈ Rn, φ = φ(x), φ(x) ||x|→∞ = 0.

We consider f (φ2) = |φ|p−1 , p > 1.
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Solutions of NLS equation: existence and stability

Theorem
Let ω > 0,N > 3 be integer, and p ∈

(
1, N+2

N−2

)
. Then the stationary problem for NLS

has a positive radial solution and, for any l = 1, 2, 3, . . . , a radial solution ul = ul (r),
where r = |x |. with precisely l roots on the half-line r > 0. Let H be a real Hilbert space
with a norm ‖·‖, J be a continuously differentiable real-value functional on H, and
S = {h ∈ H : ‖h‖ = 1}. Let r(·) > 0 be a continuously differentiable function on S such
that for any v ∈ S, J ′r (rv)|r=r(v) = 0. Then, if the functional Ĵ(v) = J(r(v)v) considered
on S has a critical point v0 ∈ S, then J ′(h)|h=r(v0)v0 = 0.

J(φ) =

∫
Rn

{
1
2

(
|∇φ|2 + ωφ2

)
− 1

p + 1
|φ|p+1

}
dx .
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Solutions of NLS equation: existence and stability

Concentration-Compactness Method (P.L.Lions)

Theorem
We consider the functional

E(u) =

∫
Rn

{
1
2
|∇u|2 − 1

p + 1
|u|p+1

}
dx .

under the restriction |u|22 = λ, λ > 0 is fixed, we set

Iλ = Inf
{

E(u) / u ∈ H1, |u|22 = λ
}

Let p ∈
(
1, 1 + 4

N

)
and λ > 0 be arbitrary. Then Iλ > −∞ and for an arbitrary

minimizing sequence {un}n=1,2,3,... of the minimizing problem there exists a sequence
{yn}n=1,2,3,... ⊂ Rn, such that the sequence {un (·+ yn)}n=1,2,3... is relatively compact in
H1 and its arbitrary limit point is a solution of minimization problem.

We have applied the above results to the problem of saturable Discrete NLS equation
(Pankov & Rothos, 2008).
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Solutions of NLS equation: existence and stability

Stability

Theorem
Let f (|u|2)u be a continuously differentiable function of the complex argument u for NLS
with (N = 1). There exists a soliton-like solution ū(x , t) = eiωtφ(ω0, x) for the NLS
vanishing as x → ±∞, for which there exists ∂

∂ω
φ(ω, ·)

∣∣∣
ω=ω0

∈ L2 and

d
dω

P(φ(ω, ·))
∣∣∣
ω=ω0

= 2
∫ ∞
−∞

φ(ω0, x)φ′ω(ω0, x)dx .

If the condition
d

dω
P(φ(ω, ·))

∣∣∣
ω=ω0

> 0

is satisfied, then this soliton-like solution ū(x , t) is stable.
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Stability of gap solitons in weak nonlocal NLS

Problem set-up

A model of nonlocal nonlinear Kerr-type media, in which the refractive index change
∆n(I) induced by a beam with intensity I(x , t), can be represented in general form as

∆n(I) = ±
∫ +∞

−∞
R(x ′ − x)I(x ′, t)dx (12.1)

± sign corresponds to a focusing (defocusing) nonlinearity/ The real, localized, and
symmetric function R(x) is the response function of the nonlocal medium, whose width
determines the degree of nonlocality. Here, the intensity I(x , t) will be equal to
I(x , t) = |Ψ(x , t)|2 so we will have

i∂t Ψ +
1
2
∂2

x Ψ + V (x)Ψ + σ∆n(I)Ψ = 0, V (x) = V0 sin2
(πx

d

)
, (12.2)
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Stability of gap solitons in weak nonlocal NLS

When the nonlocality is weak, we can expand I(x , t) around the point x ′ = x to obtain

∆n(I) = σ(I + γ∂2
x I) (12.3)

where the nonlocality parameter γ > 0 is given by

γ =
1
2

∫ +∞

−∞
R(x)x2dx , (12.4)

where response function R(x) considering to be symmetric with
∫ +∞
−∞ R(x)dx = 1.

Substituting Eq. (12.3) into Eq. (12.2) yields the modified nonlinear Schrödinger
equation

i∂t Ψ +
1
2
∂2

x Ψ + V (x)Ψ + σ
(
|Ψ|2 + γ∂2

x |Ψ|2
)

Ψ = 0, (12.5)
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Stability of gap solitons in weak nonlocal NLS

Solitary waves of Eq. (12.5) are sought in the form

Ψ(x , t) = Φs(x)eiµs t , (12.6)

where µ is the propagation constant and ψ(x) is an amplitude function that is localized
in space.
Substituting the above equation into Eq. (12.5), we get

1
2
∂2

x Φs + V (x)Φs − µsΦs + σ
(
|Φs|2 + γ∂2

x |Φs|2
)

Φs = 0, (12.7)

we need to use the hypothesis that the Bloch band around a band edge µ = µ0 is real.
Furthermore, in Figure 11 we show the effect of variable γ on the profile of an on-site
gap soliton. In particular, as the value of γ → 0 the amplitude of the on-site profile
decreases. On the other hand, by increasing the value of γ we obtain an on-site soliton
with higher amplitude.
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Figure: Comparison of on-site gap soliton profiles for different values of variable γ. The red solid
line represents function V (x) = sin(πx

5 )2. (a) On-site localised soliton for γ = 0.01 (b) By
increasing the value of γ = 0.3 the amplitude of the on-site gap soliton increases.
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Stability of gap solitons in weak nonlocal NLS

The linear version of Eq. (12.7) is a Mathieu-type equation and admits two linearly
independent solutions in the form

ψη(x , µ) = eiκx ψ̃η(x , µ), (12.8)

where ψ̃η(x , µ) is periodic with the same period π as the potential V (x) and κ lies in the
first Brillouin zone −1 ≤ κ ≤ 1. The solution of Eq. (12.7) is expanded in powers of an
amplitude parameter, 0 < ε� 1

Φs = εAη(X )ψη(x) + ε2A′ηψ
(1)
η (x) + ε3φ

(2)
s (x ; X ) + O(ε4), (12.9)

Φε =
Φs

ε
µs = µη + ε2∆η + O(ε4), (12.10)

where X = εx is the ‘slow’ variable of the function Aη(X ). Substituting the expansion of
Eq. (12.9) into Eq. (12.7) up to order O(ε2) yields

1
2
ψ(1)′′
η + (V (x)− µs)ψ(1)

η = −ψ′η(x), (12.11)

whence ψ(1)
η gives ∫ π

−π
ψ′ηψ

(1)∗
η dx = 0. (12.12)
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Stability of gap solitons in weak nonlocal NLS

Aη = Aη(X ) satisfies the nonlinear equation:

A′′ηµ
(2)
η − Aη∆η + A3

ηχ
(2)
η = 0, (12.13)

where

sgn(µ(2)
η ) = sgn(∆η) = sgn(χ(2)

η ), µ(2)
η = β2

η∆η µ(2)
η =

χ
(2)
η αηβ

2
η

2
, (12.14)

and

χ(2)
η = σ

∫ π

−π
|ψη|2(|ψη|2 + γψ′′ηψ

∗
η + 2γψ′ηψ

∗′
η + γψηψ

∗′′
η )dx∫ π

−π
|ψη|2dx

, (12.15)

Eq. (12.13) admits a sech-type solitary wave solution

Aη = αηsech
(x − x0

βη

)
. (12.16)
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Stability of gap solitons in weak nonlocal NLS

Melnikov Function

We proceed to compute the Melnikov function, according to which we first take the
derivative of Eq. (12.7) in x , so we have the third-order ordinary derivative equation:

1
2

Φ′′′s + V ′(x)Φs + V (x)Φ′s − µsΦ′s + σΦ′sΦ2
s + σΦ2

s∂x Φ2
s +

γσΦ′s∂
2
x Φ2

s + γσΦs∂
3
x Φ2

s = 0. (12.17)

Multiplying Eq. (12.17) by Φs and integrating from −∞ to +∞ using integration by
parts, we obtain the following constraint

Ms(x0) =

∫ +∞

−∞
V ′(x)Φ2

sdx = 0 (12.18)

Substituting the perturbation expansion of Eq. (12.9) into the above constraint we get

Ms = ε2
∫ +∞

−∞
A2(X )V ′(x)ψ2

η(x)dx +

+2ε3
∫ +∞

−∞
A(X )A′(X )V ′(x)ψη(x)ψ(1)

η (x)dx + ... = 0. (12.19)
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Stability of gap solitons in weak nonlocal NLS

We then calculate the integrals, starting with the first term. We expand the product
V ′(x)ψ(x)2 into the following Fourier series expansion

V ′(x)ψ2
η(x) =

∞∑
m=1

cm sin
(2mπx

d

)
, (12.20)

where c1, c2, ... are the Fourier coefficients.
Now we put Eq. (12.20) into Eq. (12.19), so that we may derive exponentially small
terms to this integral, keeping only the leading order term for the first Fourier
mode(m = 1) and using Eq. (12.16), we find the integral W1 sin(2x0) where

W1 = εc1α
2
η

∫ +∞

−∞
sech2

(
βηX

)
cos

(2πX
εd

)
dX =

2π2c1α
2
η

β2
ηd

csch
( π2

εβηd

)
, (12.21)
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Stability of gap solitons in weak nonlocal NLS

We now consider that W1 = O(e−
π2

εβηd ), which is exponential small in ε, while all the
terms in Eq. (12.19) are of the same order in ε. Hence we can easily prove using
integration by parts that all coefficients Wη are of the same order in ε, and thus arrive at

Ms =

(
∞∑

n=1

Wn

)
sin
(2πx0

d

)
= 0. (12.22)

Notice here that the weak nonlocality influences the above equation through the
parameter αη(see Eq. (12.14)), which means that it will have an important effect on
stability. Also the above constraint would be satisfied if

sin
(2πx0

d

)
= 0 ⇒ x0 = 0,

d
2

(12.23)

In the first case (x0 = 0) the corresponding soliton is called an on-site soliton because the
peak of the envelope function Aη is located at a potential minimum whereas in the
second case (x0 = d/2) the corresponding soliton is called off-site soliton since the peak
of the envelope function Aη is located at a potential maximum.
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Stability of gap solitons in weak nonlocal NLS

Symmetry Breaking Instability of Gap solitons
In order to study the linear stability of gap solitons Φs, near the band edge µs = µn,
employing the method of linear stability analysis, we assume

ψ(x , t) = e−iµs t
[
Φs(x) + (u(x) + iw(x))eλt + (u∗(x)− iw∗(x))eλ

∗t
]
, (12.24)

where ε� 1, while u,w are the perturbation eigenfunctions and λ is the growth rate of
the perturbation. Linearizing Eq. (12.7) we obtain

iLW = λW, (12.25)

where W = [u,w ]T

L =

(
0 L0

−L1 0

)
, (12.26)

Here L0 and L1 are Schrödinger operators

L0w = −1
2
∂2

x w − (V (x)− µs)w − σΦ2
sw − γσ(∂2

x Φ2
s)w ,

L1u = −1
2
∂2

x u − (V (x)− µs)u − 3σΦ2
su − γσ(∂2

x Φ2
s)u − 2γσΦs∂

2
x (Φsu). (12.27)

The gap soliton Φs is therefore linearly unstable if λ has an imaginary component, while
if λ is real the gap solitons is stable.

V.M. Rothos (AUTh) Stability of nonlinear waves: theory and examples 10 July 2018 73 / 79



Stability of gap solitons in weak nonlocal NLS
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Figure: Bifurcation of the norm for off-site (dashed line) and on-site (solid line) solitons with
respect to variable µ for two different γ values, γ = 0.9 (black lines) and γ = 0.001 (red lines).
(a) Bifurcation diagram for both solitons. The points marked on the diagram correspond to a
profile for each soliton.
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Figure: Bifurcation of the norm for off-site (dashed line) and on-site (solid line) solitons with
respect to variable µ for two different γ values, γ = 0.9 (black lines) and γ = 0.001 (red lines).
In both calculations we use the function V (x) = sin(πx

5 )2 which can be seen in (b) and (c)
plotted in the red solid line and parameters σ = 1, γ = 0.3. (b) Profile of the off-site soliton
solution. (c) Profile of the on-site soliton.
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Stability of gap solitons in weak nonlocal NLS

the symmetry of the modified NLS Eq. (12.7), we have a nonempty kernel of operators
L0 and L1 at all power orders of εn, so

L0Φε(x ,X ) = 0, L1Uε = 0(εn), Uε =
∂Φε(x ,X )

∂X
, (12.28)

Using straightforward calculations we can show below that the zero eigenvalue of L1,
connected with the eigenfunction Uε, shifts according to〈

Uε,L1Uε
〉

=
1

2ε4 M ′s(x0), (12.29)

If λ = λε is a small eigenvalue corresponding for eigenfunction uε, we obtain that

λ2
ε ≈ −

2M ′s(x0)

ε2
〈

Φε,Φε
〉 . (12.30)
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Figure: Discrete eigenvalues for on-site and off-site soliton solutions for two different values of γ,
γ = 0.9 (black squares) and γ = 0.001 (red triangles). (a) Two neutrally stable imaginary
eigenvalues computed for the solution as seen in Fig.2 (b). (b) Two real unstable eigenvalues
numerically computed for the solution as seen in Fig.2 (c).
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Conclusions

Conclusions

• We briefly reviewed the solitonic solutions of NLS.
• We reviewed the theorems of existence and stability of solutions for NLS.
• NLS with weak nonlocality

• We studied the stability of one-dimensional gap solitons employing the modified NLS
equation with a sinusoidal potential together with the presence of a weak nonlocality.

• Using Melnikov function, it is proved that two soliton families bifurcate out from every
Bloch-band edge under self-focusing or self-defocusing nonlinearity, and one of these is
always unstable.
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