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The Gutenberg-Richter (GR) 

law of seismicity

N.V.S., S.-R. G. Christopoulos, and E.S. Skordas (2015) Minima of the fluctuations of

the order parameter of global seismicity, Chaos, 25, 063110.
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Anderson, J. A., and H. O. Wood (1925) Description and theory

of the torsion seismometer, Bull. Seismol. Soc. Am. 15, 1–72.
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B. Gutenberg and C.F.Richter (1944) Bull. Seismol. Soc. Am.

34, 185–188.



The GR law of seismicity

N(>M)=10a-bM



Derivation of the GR law on the basis 

of Tsallis non-additive entropy 

statistical mechanics

O. Sotolongo-Costa and A. Posadas, (2004) Fragment-asperity

interaction model for earthquakes Phys. Rev. Lett. 92, 048501.

The fault motion can be hindered not only

by the overlapping of two irregularities of

the profiles, but also by the eventual

relative position of several fragments as

illustrated in the figure between the

points ‘‘a’’ and ‘‘b.’’ Stress in the resulting

structure accumulates until a

displacement of one of the asperities,

due to the displacement of the hindering

fragment, or even its breakage in the

point of contact with the fragment

leads to a relative displacement of the

fault planes of the order of the size of

the hindering fragment ‘‘r.’’



Derivation of the GR law on the basis 

of Tsallis non-additive entropy 

statistical mechanics

O. Sotolongo-Costa and A. Posadas, (2004) Fragment-asperity

interaction model for earthquakes Phys. Rev. Lett. 92, 048501.

As large fragments are more difficult to

release than small ones, Sotolongo-Costa

and Posadas assume the earthquake

energy ‘‘ε’’ to be proportional to r, so that

the energy distribution of earthquakes

generated by this mechanism can reflect

the size distribution of the fragments

between plates.

Then, they apply the maximum entropy

principle for the Tsallis entropy:

for the distribution p(σ) finding a

fragment of relative surface σ.



Derivation of the GR law on the basis 

of Tsallis non-additive entropy 

statistical mechanics

O. Sotolongo-Costa and A. Posadas, (2004) Fragment-asperity

interaction model for earthquakes Phys. Rev. Lett. 92, 048501.

Τhen, the application of the maximum entropy principle under the constraints

and

leads to

for the area distribution of the fragments of the fault plates.

Since the released relative energy ε was assumed proportional to the linear dimension

r of the fragments and σ scales with r2, the energy distribution function of earthquakes

due to this mechanism can be obtained, which when assuming m∝log(ε) leads to



Derivation of the GR law on the basis 

of Tsallis non-additive entropy 

statistical mechanics

R. Silva, G. S. França, C. S. Vilar, and J. S. Alcaniz (2006)

Nonextensive models for earthquakes Phys. Rev. E 73, 026102.

Later, Silva et al. (2006) revisited the same problem and applied the maximum entropy

principle under the following constraints that make use of the escort distriburion Pq(σ)

, and

this led to

for the area distribution of the fragments of the fault plates.

Then, assuming for the energy ε∝r3, Silva et al. (2006) obtained the energy distribution

function p(ε) for the earthquakes and by considering the relationship m = ln(ε)/3:



Derivation of the GR law on the basis 

of Tsallis non-additive entropy 

statistical mechanics

*N.V.S., E. S. Skordas, and P. A. Varotsos (2010) Nonextensivity and natural time:

The case of seismicity, Phys. Rev. E 82, 021110.

The above equation incorporates the characteristics of

nonextensivity into the distribution of earthquakes by

magnitude, and the GR law can be deduced as its

particular case when considering a significant magnitude

threshold. Then, it reduces to the GR law with*

b = 2(2 − q)/(q − 1).

Thus, it can be alternatively termed as a generalized

GR law.
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NATURAL TIME (χρόνος)

Ion current fluctuations in 
membrane channels

exhibit properties described by 
the “uniform” distribution which 
is completely different from 
those of SES  (critical dynamics)

Phys.Rev.E 66, 011902 (2002)

Discrimination of SES 
activities (strongest memory) 
from noise emitted from nearby 
artificial sources
Phys.Rev.E67, 021109 (2003); 
CHAOS 19, 023114(2009); 20
033111 (2010); Tectonophysics 
503, 189-194 (2011).

Similar looking signals that are 
emitted from systems with 
different dynamics can be 
distinguished.
Modern techniques of statistical 
physics, e.g., Hurst Analysis, 
Wavelet transform, Detrended 
Fluctuation Analysis (DFA) etc. 
should be better made in natural 
time.
Phys. Rev. E 68, 031106 (2003)

Analysis of  
electrocardiograms in natural 
time:
The sudden cardiac death
individuals are distinguished 
from the truly healthy ones as 
well as from patients.
Phys. Rev. E 70, 011106 
(2004);Phys. Rev. E 71, 011110 
(2005);Appl. Phys. Lett. 91, 
064106(2007);  EPL 87, 18003 
(2009); EPL 109, 18002 (2015)

Physics of Earthquakes:
•Universal curve
•Order parameter
•which exhibits characteristic 
fluctuations before mainshocks
•Identify correlations between 
earthquake magnitudes
•Studying the seismicity after an 
SES activity, we can determine 
the time-window of the 
impending mainshock with 
good accuracy of a few hours to 
a few days.
•Predict the magnitude of 
aftershocks  

•High Tc-superconductors
(Small changes in the magnetic 
field can result in large 
rearrangements of fluxing the 
sample, known as flux avalanches)

•Rice piles
(Self Organized Criticality)
Phys.Rev.B 73, 054504 (2006); 
EPL 96, 28006 (2011)

•Critical Systems in general
Proc. Natl. Acad. Sci. USA 108, 
11361-11364 (2011)

The entropy S changes to S-
under time reversal.
Phys.Rev.E71, 032102 (2005) and 
its change can be used for 
predicting  the avalanches in the 
OFC model  Tectonophysics 513, 
49 (2011)

It was suggested by P. Varotsos, N. Sarlis and E. Skordas, Practica of Athens Academy 76, 294 (2001). For a 
recent review see P. Varotsos, N. Sarlis and E. Skordas “Natural Time Analysis: The New View of Time” 
Springer-Verlag (2011).
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Applications to the physics of earthquakes:
Practica Athens Acad. 76, 294-321 (2001); Acta Geophys. Pol. 50,337-354 (2002)

Order parameter (OP) Phys. Rev. E 72 , 041103 (2005)
Universal curve Phys. Rev. E 72 , 041103 (2005);82, 021110 (2010), EPL 100

39002 (2012)
This OP: (1) exhibits characteristic fluctuations before mainshocks EPL

91, 59001(2010); 96 59002 (2011); 99 59001 (2012), Nat. Hazards Earth Syst. 
Sci. 12, 3473–3481(2012), Τectonophysics 589, 116-125(2013); Proc. Natl. 
Acad. Sci. USA 110, 13734–13738(2013); Pure Appl. Geophys.,  DOI: 
10.1007/s00024-014-0930-8 (2014); J. Geophys. Res. Space Physics 119, 
9192–9206 (2014);Proc. Natl. Acad. Sci. USA 112, 986–989 (2015); Scientific 
Reports 8, 9206 (2018) (2) identifies correlations between earthquake 
magnitudes Phys. Rev. E 74, 051118 (2006); 80, 022102 (2009);82, 
021110(2010);  84, 022101 (2011), CHAOS 22, 023123 (2012)
Studying the seismicity after an SES activity, we can determine the time 

window of the impending mainshock with good accuracy of a few days  to 
one week. Practica Athens Acad. 76, 294-321 (2001);  Acta Geophys. Pol. 50, 
337-354 (2002); Phys. Rev. E 72, 041103 (2005); 73, 031114 (2006); 74, 
021123 (2006), J.  Appl. Phys. 103, 014906 (2008), Proc. Jpn Acad. Ser. B 84, 
331-343 (2008), J. Geophys. Res. 114 B02310 (2009); EPL 92, 29002 (2010); 
Proc. Jpn. Acad. Ser. B 89, 438-445(2013); J. Asian Earth Sci. 80 , 161–164 
(2014); Earthq. Sci. 28 , 215-222 (2015); Earthq. Sci. 30, 183-191 (2017); 30,
209-218 (2017)
Prediction of aftershock magnitudes: Phys. Rev. E 85, 051136  (2012); 

Complexity 2017, 6853892 (2017)
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Introduction to Natural Time 
Analysis (NTA)

Let us assume a time series
comprising N events. In NTA, the
first event is `placed' on the
horizontal axis at χ

1
=1/N, the

second at χ
2
=2/N etc. In general,

the event that occurred k-th in
order is placed at χ

k
=k/N

We call χ
k
=k/N natural time.

For each event k, we consider a
quantity Q

k
which is, in general,

proportional to the released energy
E

k
.

In NTA, we study the evolution of 
the pair (χ

k
,Q

k
) .P. Varotsos, N. Sarlis, and E. Skordas, 

Practica of Athens Academy 76, 294 
(2001)
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P. Varotsos, N. Sarlis, and E. Skordas, Practica of Athens Academy 76, 294 (2001)

οr Π(ω)=|Φ(ω)|2
may be considered as characteristic functions for the
distribution of p

k
in the sense of Probability Theory.

pk =Qk /∑
n=1

N

Qn

In order to study the evolution of the pairs (χ
k
,Q

k
) in

natural time analysis, we define the normalized energy
release:

•Since p
k

are positive and sum up to unity they can be
considered as probabilities. Thus,

Φ(ω)=〈exp(iωχ )〉= ∑
n=1

N

p
n
exp( iωχ

n
)
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Τhe variance κ
1 
of natural time

Since characteristic functions provide 
information on the distribution when ω→0, we 
study Π(ω) in this limit:

As ω→0,   Π(ω)≈1-κ
1
ω2     

where

κ
1
=<χ2>-<χ>2=∑(χ

k
)2p

k
-(∑χ

k
p

k
)2

is the variance of natural time.

P. Varotsos, N. Sarlis, and E. Skordas, Practica of Athens Academy 76, 294 (2001)
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Important properties of κ
1

*The quantity κ
1
, or equivalently the quantity  

Π(ω)=|Φ(ω)|2 for ω→0, has been proposed  
as an order parameter (OP) for seismicity.
[P. Varotsos et al. Phys. Rev. E 72, 041103 (2005)]

*For systems at criticality the following 
condition holds κ

1
=0.070

[P. Varotsos et al. Proc. Nat. Acad. Sci. USA 108, 
11361-11364 (2011) ]
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Definition of the order parameter 

(OP)

According to L.D. Landau and E.M. Lifshitz
(Statistical Physics 3rd Edition Part 1, Pergamon 

Press, Oxford 1980, see p.449):
“To describe quantitatively the change in the 

structure of the body when it passes 
through the phase transition point, we can 

define a quantity η, called the order 
parameter, in such a way that it takes non-

zero (positive or negative) values in the 
unsymmetrical phase and is zero in the 

symmetrical phase.”
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Why κ
1

behaves like an OP for 
seismicity?

The value of κ
1

after the Seismic
Electric Signal on April 18, 1995 until
the M6.6 Kozani-Grevena EQ on May
13, 1995 (labelled 18).

⚫κ
1

is non-zero before the
occurence of a strong
earthquake (EQ) (like
magnetization M is non-
zero below the Curie
temperature in the
unsymmetrical phase)

⚫κ
1

becomes zero upon the
occurrence of a strong EQ
(like M is zero above the
Curie temperature in the
symmetrical phase)

Phys. Rev. E, 72 (2005) 041103
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Similarity in the fluctuations of the 
order parameter for correlated systems

Bramwell, Holdsworth and Pinton (BHP) [Nature 396,
552(1998)] in an experiment of a closed turbulent flow, found
that the (scaled) probability distribution function (pdf) of the
power fluctuations has the same functional form as that of the
magnetization M of the finite-size 2D (two-dimensional) XY
equilibrium model in the critical region below the Kosterlitz-
Thouless transition temperature (Magnetic ordering is then
described by the order parameter M).

The scaled pdf, denoted by P(m), is defined by introducing the
reduced magnetization m=(M-<M>)/σ, where <M> denotes the
mean and σ the standard deviation. For both systems, BHP
found that while the high end (m>0) of the distribution has a
Gaussian shape, a distinctive exponential tail appears towards the
low end (m<0) of the distribution.
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For systems with a second-order phase transition, the scaled pdf of the order
parameter in the critical regime depends [B. Zheng and S. Trimper, Phys. Rev.
Lett. 87, 188901 2001] on K=1/T and the length L through a scaling variable

s=L1/ν(K − K
c
)/ K

c
,

where K
c
=1/T

c
and T

c
denotes the critical temperature. The quantity sν provides

the ratio of the lattice size and the correlation length at K. In the figure, we
include numerical results of the 2D Ising model for s=8.72 L=128, K = 0.4707 and
s = 17.44 L = 256, K= 0.4707. These s values were intentionally selected
because for s≥ 8.72[B. Zheng, Phys. Rev. E 67, 026114 2003], the scaled pdfs
for the 2D Ising model and of a number of other critical models i.e., 2D XY, 2D
Ising, 3D Ising, 2D three-state Potts share the same form up to a constant factor
of s.
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Construction of the probability density 
function of the OP κ1 of seismicity

We consider sliding windows of 6 to 40 events and estimate κ
1

for each earthquake (EQ) in the EQ catalog
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This way we construct the probability 
distribution (pdf) P(κ

1
) which changes 

once we randomly 'shuffle' the catalog

P
h
y
s
. R

e
v. E

7
4

, 0
2
1
1
2
3

 (2
0

0
6

)
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The scaled pdf however is 
universal for various regional 

seismicities

Phys. Rev. E 74, 021123 (2006)
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Physica A 392, 2507-2512 (2013)

The scaled pdf however is universal 
for various regional seismicities
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and collapses on that of other 
critical phenomena

Phys. Rev. E 74, 021123 (2006)
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the same behavior is also observed for the 
global seismicity when considering the most 

accurate global seismicity catalogs

Chaos 22,  023123 (2012)

and pertains down to the AE in Etna 
Bassalt [F.Vallianatos, G. Michas, P. 

Benson and P. Sammonds, Physica A 
392, 5172-5178 (2013)]
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Similarity of fluctuations in systems 
exhibiting Self-Organized Criticality

E
P

L
 9

6
 (2

0
1
1

) 2
8
0
0
6
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The long term behaviour of  κ
1

for seismicity, 

the GR law and the generalized GR law which is 

based on Tsallis non-additive entropy

P
R

E
 8

2
 (2

0
1
0
) 0

2
1
1
1

0

Results for Southern California and Japan

•(no temporal correlations between earthquake magnitudes)



33

The long term behaviour of  κ
1

for seismicity, 

the GR law and the generalized GR law which is 

based on Tsallis non-additive entropy

P
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) 0
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1
1

0

Results for Japan

•(WITH the observed temporal correlations between magnitudes)
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The long term behaviour of  κ
1

for seismicity, 

the GR law and the generalized GR law which is 

based on Tsallis non-additive entropy

P
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E
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) 0
2
1
1
1
0

Results for Southern California

•(WITH the observed temporal correlations between magnitudes)
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The long term behaviour of  κ
1

for seismicity, 

the GR law and the generalized GR law which is 

based on Tsallis non-additive entropy

PRE 82 (2010) 021110

These results show that the nonextensive parameter

q does not capture the effect of long-range

temporal correlations

between the magnitudes of

successive earthquakes.
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Study of  the order parameter 

fluctuations before major 

earthquakes



Natural time analysis of seismological 

catalog excerpts

We calculate for each EQ 

ei (i=41 in the present 

example) the κ1 values 

using the previous 6 to 40 

consecutive EQs (in the 

opposite direction to that in 

A) and assign these κ1

values to ei . Selecting now 

the κ1 values related with 

ei for i=i
0
, i

0
-1, . . . , i

0
-W-1, 

we can get a picture of 

how the OP of seismicity κ1

behaves before an EQ that 

takes place at i.



Natural time analysis of seismological 

catalog excerpts

Such a picture can be 

obtained by studying 

the probability density 

function P(κ
1
) of the 

such obtained (κ
1
-

values’) ensembles.

W=5000 before

W=3000 before

W=1000 before

EPL 91(2010), 59001
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New result!

The variability of κ1,
β ≡ σ(κ1)/μ(κ1), 
when using various natural
time windows ending just
before a main shock,
exhibits an increase
when approaching a main shock.
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Fig. A6, taken from the book “EARTHQUAKE PREDICTION BY 

SEISMIC ELECTRIC SIGNALS: The success of the VAN method 

over thirty years” by Dr Mary Lazaridou-Varotsos published in 

2013 by Springer-Verlag
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Seismic Electric Signals (SES) activities are series of 

low frequency electric signals that precede

earthquakes (with an average lead time of a few

months) reported from measurements in Greece in 

the 80’s.

Almost 35 years ago, it has been suggested that SES 

activities arise from a cooperative orientation of 

electric dipoles formed due to defects when the stress

in the focal area reaches a critical value.

Cooperativity is a hallmark of criticality.

Seismic Electric Signal Activities
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1986
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An SES activity example from 1995

recorded almost one month before an M6.6 earthquake



45The cover of the book entitled “Physics of Seismic Electric Signals” by P. Varotsos 

released in 2005 by the Japanese Publishing House TerraPub in Tokyo.

2005



46The cover of the book entitled “Earthquake prediction by Seismic Electric Signals” by 

Mary S. Lazaridou-Varotsos released in 2013 by Springer

2013
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New result!

The variability of κ1,
β ≡ σ(κ1)/μ(κ1), 

calculated for the specific scale 
W=300, which
corresponds to the average lead time 
of Seismic Electric Signals, exhibits 
the deepest minimum  before the 
strongest mainshock.
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California                                              Greece
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New result!

The variability of the OP κ1,
β ≡ σ(κ1)/μ(κ1), 

calculated for scales comparable to 
the average lead time of Seismic 
Electric Signals, exhibits 
characteristic minima a few months 
before  strong earthquakes.
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Proc. Natl. Acad. Sci. U.S.A.

110, 13734-13738 (2013)
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Thank you!


