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Modeling Brain Dynamics-
Top Down and Bottom Up
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FMRI Neurolmaging and Data Mining

B - The primary form of fMRI uses
M the blood-oxygen-level
e dependent (BOLD) contrast.
*This Is a type of specialized brain and
body scan used to map neural activity
In the brain or spinal cord of humans
or other animals by imaging the
change in blood flow
(hemodynamic response) related
to the energy used by brain cells.

« fMRI provide signals that are
contained in a high 4D dimensional
space.



FMRI Neurolmaging and Data Mining

W ° Inatypical 4D functional connectivity fMRI
| scan more than 100,000 voxels (which contain

d the activity information of millions of

neurons) are recorded at each time instance.

thus in the four dimensions of space and
time, one gets several millions of data
measurements.

Hence, one is confronted with two challenges:

A. that of dimensionality reduction and the problem of data mining,
I.e. extracting features (biomarkers) that pertain to the investigated
brain function within each subject and

B. that of classifying differences among subjects or groups of subjects
(e.g Controls vs. Patients)



MAIN GOAL
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Functional Connectivity:

estimates whether there is any functional
connection between functional regions,
even if indirect. (Smith et al., 2013)

It is defined as statistical dependencies
among remote neurophysiological
events.

Effective Connectivity:
refers explicitly to the influence that one neural
system exerts over another, either at a synaptic

or population level. (Friston, 2011)
Causal Connectivity:

estimates whether the response of a region
causes that of another.

Granger causality
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The average
Inverse
shortest path
lengthis a
related measure
known as the

global
efficiency

average path length of a network

path length / between i and j:
the number of edges in the shortest path between i and j

I(152)=1
(1-57)=2
(1 +6)=4

average path length = / averaged over all of the node pairs
real networks: much smaller average path length than regular networks!




Brain Connectivity

()

Clustering coefficient

The density of the network surrounding
node |, characterized as the number of
triangles through |, Related to network
modularity

n, 2n,

[;c]_k-(k—l)

k: neighborsof /

n;: edges between node
I's neighbors
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Closeness Centrality

+ Sum of geodesic distances fo all other nodes
+ Inverse measure of centrality

"Highest"
Closeness
Centrality




Construction of Connectivity Networks Based on
Manifold Learning Techniques
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Construction of Connectivity Networks Based on
Manifold Learning Techniques

O

Data Preprocessing

: ng_h — Removal of Manifold Learning
Dimensional 4D artifacts etc, ...

Space ICA

Linear/ Nonlinear

Construction of the
Group Graph-Theoretical Embedded
Statistical Analysis Analysis Connectivity
Network

Siettos, C.1., Starke, J., 2016, Multiscale Modeling of Brain Dynamics: from Single Neurons and Networks to Mathematical Tools, WIRESs Systems
Biology and Medicine, 8(5), 438-458.




FMRI data processing was carried out using FEAT (FMRI Expert Analysis
Tool) Version 6.00, part of FSL (FMRIB's Software Library,
). The following pre-statistics processing was applied:

motion correction using MCFLIRT [Jenkinson 2002];

slice-timing correction using Fourier-space time-series phase-shifting;
non-brain removal using BET [Smith 2002];

spatial smoothing using a Gaussian kernel of FWHM 5mm,;
grand-mean intensity normalization of the entire 4D dataset.

Then we used ICA-AROMA* for removing motion related ICA components of
the FMRI data and at last we applied:

High-pass temporal filtering (Gaussian-weighted least-squares straight line
fitting, with sigma=50.0s).

*Pruim, Raimon HR, et al. "ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data." Neuroimage 112
(2015): 267-277.



Independent Component Analysis

FMRI data
BOLD

n time points s(t,x,y,z)= ,Zl\f“l A (t)C(x.y.2)




Frontal-angular Somato- Default mode Temporo-

' isual Fronto-Parietal
gyrus-precuneous AUdIOY __motor Visua = network parietal




Manifold Learning

O




Principal Component Analysis

» Orthogonal linear transformation of data to a : | 3
new coordinate system so that the greatest & Sempmdpamm. .‘ﬁ
variance by some projection of data is captured
on the first coordinate (1% principal
component), the second greatest variance on s
the second, and so on. 2 BT "‘

.\‘ICPI?.T:TI'Z.\',' ' :
iV =] '

Step 2: subtract the mean: P; = x; — ¥ ﬂ. ‘ : D : ]
Step 3: form the matrix A =[P Dy --- Dy ] (NxM matrix), then
compule:

' T 4T
C= ”';d)cb = /

(sample covariance matrix, Nx N, characterizes the scatter of the data)

Step 4: compute the cigenvalues of C: A > Ay > -+ > Ax

I Step 5: compute the eigenvectors of C: uy, w2, ... UN _




MDS

O

Idea: Represent high dimensional points in a few dimensions keeping
distances between points similar

Squeeze on table

Given

distances

between points

recover the .
.. Close points

positions of the stay close

points!




MDS

I S

1. Set up the matrix of squared proximities P2 = [p?].

2. Apply the double centering: B = —5JP?J using the matrix J = I —n~'11’,
where n 1s the number of objects.

3. Extract the m largest positive eigenvalues A; ... A,, of B and the corresponding
m eigenvectors €g . .. €my,.

4. A m-dimensional spatial configuration of the n objects 1s derived from the
coordinate matrix X = E,,A'I'{’, where E_, 1s the matrix of m eigenvectors
and A,, 1s the diagonal matrix of m eigenvalues of B, respectively.



_—small
Euclidean
distance

large
geodesic
distance




Manifold Learning Algorithms
PCA and MDS would fail







Detect the Manifold!

*For two arbitrary points in a high dimensional space
the Euclidian distance may not reflect the
Intrinsic similarity of features

* Hence, the goal is to measure the distance as
the blue line in (A).

* This for example can be done by computing the
geodesic distances (ISOMAP) on the manifold (B).

To construct a low dimensional space (C)



Construction of a Distance matrix: Metrics

O




ISOMAP

e Construction of the connectivity graph based on the
k-nearest neighbors of the components based on a
metric (Euclidian, Correlation, etc..).

e Computation of the shortest path between each
pair of nodes in the graph.

This will result to a square matrix D with elements
representing the length of the shortest paths
(called geodesic distances) among nodes.

eConstruct the d-dimensional embedding space.
The embedded space is spanned by the

first d eigenvectors

corresponding to the largest eigenvalues of D.



ISOMAP

C I B B B




Diffusion Maps

de La Porte et al.




Coifman & Lafon 2006

Diffusion Maps
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Diffusion Maps

O

Require: Eigenvalues 1 and Eigenvectors @ of M

N datapoints e S
. h
{ x(') Compute Mx_neighborhood” matrix K Compute symmetric matrix Ms (adjoint of M)
__,‘—:"'___.- ” (‘) U) ‘M s Duzx‘m-]ﬁ =D-V2KD-V3
T ' K =exp| - Parameter G s _
E B Local neighborhood size Compute a few top Eigenvalues }. and Eigenvectors ‘¥ of M
_ MY =4¥
Compute diagonal normahzahon matrix D Msand M
share same eigenvalues MY, =1Y,
Zl MY, =AY,
Jl
Compute Markovian matrix M Relate Eiqenvectors Y of M.to Eigenvectors ® of I: @, = D'Vl\pj
M=D"K “h%
=40,
Require: Eigenvalues 4 and Eigenvectors & of M
Plot components of Eigenvectors ¢ SR
Top — M® = /0 | | [NxN] [m] JQ.QQBE.&.IQJM@.S.QLQI_U}JQD_M&Q Nkorots
2 — MO0, ATDA>AOh ’ "M) o
L] 12) °l ]
. . A few Eigenvalues\Eigenvectors provide N eigenvector components :: ﬂ
: . meaningful information on dataset geometry oonespmdngtoNdalmomls w
A _'MQN " AN% (q,jm ¢(n) ATa

Diffusion distance = Euclidean distance in diffusion map space




ISOMAP constructs embedded graphs using k-NN
algorithm, thus no further thresholding is needed.

Node

Highdegree @, <
ch o / ) 7 \ :x";

PCA and Diffusion Maps result to FULL CONNECTED
GRAPHS. So we construct (sparse) networks using the
5% to 70% of the strongest connections.



Graph metrics

O

metric features requirements We make sure th at the
graphs between the two
groups are comparable!

Most used brain graph metrics

weighted directed negative connected

large characteristic path length yes yes no yes
global-efficiency yes yes no no .
. . We check if graphs have no
clustering coefficient yes yes 1no no o : :
. significant differences in the
local-efficiency yes yes no no i
_ number of edges, vertices, graph
modularity yes yes yes no ) .
, , N density and median degree of
intermediate communities yes yes 1no 1no g .
. nodes*.Differences in any of
t .
“:’ IZ e these measures could bias the
edge betweenness yes yes 1no 1no an aly sis*.
redundancy 1no yes no 1no
small degree yes yes yes no

*Van Wijk, B. C., Stam, C. J., & Daffertshofer, A.
node betweenness yes yes no no (2010). Comparing brain networks of different

size and connectivity density using graph theory.
PloS one, 5(10), e13701.

accessibility yes yes no yes _

eigenvector centrality yes yes yes yes




Our clinical data consists of 74 healthy controls and
72 patients with Schizophrenia.

The Fmri Resting-State data and phenotypic
Information were collected and shared by the Mind
Research Network and the University of New Mexico
funded by a National Institute of Health Center of
Biomedical Research Excellence (COBRE)
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Global Network Metrics: Cross-Correlation Based
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Global Network Metrics: PCA
()

PCA Controls VS Patients
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Embedded Networks-PCA
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MDS Lagged cross Corr Controls VS Patients

Global Network Metrics:

MDS-Correlation Based
A
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Embedded Networks:
MDS-Correlation Based

O

MDS (Lagged C-C metric) thresholded to 0.35 MDS (Lagged C-C metric) thresholded to 0.35
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Isomap-Euclidian Metric
)

ISOMAP Controls VS Patients
Average path length Median Closeness Centrality
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Embedded Networks — Isomap-Euclidian
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Isomap-Cross Correlation-based
)

ISOMAP Controls VS Patients
Average path length Median Closeness Centrality
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Embedded Networks
Isomap — Correlation Based
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Global Network Metrics:
Diffusion Maps-Heat-Euclidian
7\

Diffusion Maps Controls VS Patients
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Embedded Networks:
Diffusion Maps-Heat-Euclidian

2nd Diffusion Coordinate
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Global Network Metrics:

Diffusion Maps-Gaussian-CCorrelation Based
7

Diffusion Maps Controls VS Patients
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Embedded Networks:
Diffusion Maps-Heat-Correlation Based
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Conclusions

A data-driven methodology based on nonlinear manifold learning
techniques to construct low-dimensional embedded functional
connectivity networks for fMRI data

ICA, PCA, MDS, ISOMAP and Diffusion MAPS were employed
towards this direction

The approach allowed the identification of significant differences
between groups (controls, and patients treatment).

Cross Correlation, PCA, MDS
ISOMAP seems sensitive to metrics. Fails with the Euclidian.

Diffusion Maps seems to be slightly more robust w.r.t thresholding



Further work

O




Thank you for your attention




