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Monoclinal flood wave in water

well described by the Saint-Venant equations,
 which are two coupled PDEs  for

h(x,t)  and  ū(x,t)
height of the 
water sheet

depth-averaged 
velocity
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Another important concept in this context: 
the Froude number

inertial forces
  vs. gravity
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1.  Conservation of mass:
         (continuity equation)

2.  Momentum balance:

gravity component 
 in x-direction

gradient of 
depth-averaged pressure

momentum 
change

g

The Saint-Venant equations



In fact, the Saint-Venant equations 
admit various types of waves:

0.  Basic solution: 
uniform steady flow

1.  Monoclinal wave

2.  Roll wave 

3. Rising waves
 (hydraulic jumps) 

also known in 
granular flow

not yet observed
 in granular flow

also in 
granular flow

also in 
granular flow

Gray & Edwards, JFM 755 (2014)

Boudet et al., JFM 572 (2007)



Now we turn to 
granular matter

sand avalanches, landslides, etc.



Saint-Venant equations
for granular flow
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friction with 
the chute

Mass conservation:

Momentum balance:

viscous-like
term

special granular 
features: 
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Special granular features 1:  the friction law

• In the case of water, an arbitrarily small shear stress is sufficient to 
put the fluid in motion.

• Sand, however, remains motionless until the shear stress exceeds a 
certain threshold value => so the slope of the chute (ζ) has to exceed 
a critical value ζ1 in order to make the sand flow. On the other hand, 
the slope must stay below a second critical value ζ2 because 
otherwise the sand will rush down in an uncontrollable avalanche.

Only in the intermediate interval  ζ1 < ζ < ζ2  we can witness the 
balance between forces necessary for a steady flow.

the friction coefficient μ(h,ū) 
depends on h and ū

And also on the inclination ζ of the chute:
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In our system:

 Pouliquen and Forterre, J. Fluid Mech. 453 (2002)
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This effective viscosity arises from the 
normal stresses in the granular sheet.

It plays a key role in 
preventing the waves 

from developing 
infinitely steep fronts.

Special granular features 2:  the viscous term

 Gray and Edwards, J. Fluid Mech. 755 (2014)
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Basic solution: steady uniform flow
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 , tan( )h u 
balance between the forces of 

gravity and friction:
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We expect monoclinal waves in the range:
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“The proof of the pudding is in the eating”

Numerical experiment

Initial condition (t = 0 s): 
we have intentionally mismatched the velocity field

ū (x,t)   [m/s]h (x,t)   [m]

 the system repairs this mismatch spontaneously, 
producing a genuine monoclinal wave

First-ever observation of a 
granular monoclinal wave





Balance of forces in the monoclinal wave

Main players:  gravity & friction

Three orders of magnitude smaller:
    pressure gradient  &  inertial forces

Even smaller:  viscous force



Speed of the shock 

Here:    c  =  0.70 m/s,    
   ū_=  0.32 m/s  (and h_= 0.032 m),  
   ū+ =  0.25 m/s  (and h+ = 0.026 m).  
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Speed of the shock : 

  the flux of material leaving the shock zone 
must be equal to the flux entering the shock: 

‒‒ 0.38 m/s ‒‒ 0.45 m/s 

c



Travelling wave analysis
We introduce the travelling-wave variable
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constant flux
 observed in the 
co-moving frame

integration
constant

With this (   and hence                , 
etc.) we can eliminate ū  and its derivatives  from the 
momentum balance:

This can be integrated immediately:

( )K h c u 

1u c K h  2' 'u K h h



  2 1
1 1 5/2

tan( ) tan( )
tan( )

1 cos( ) / ( )
h

L g h ch K

  
 


 

 

Note that with also the friction coefficient 
μ(h,ū) has become a function of  h  alone:

One single second-order ODE for h(ξ) !!
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This ODE (with the proper boundary conditions) gives all 
granular waveforms travelling at constant speed.  

In particular also the monoclinal wave:



Dimensionless form of the ODE
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By measuring all length scales (h and ξ) in terms of the 
thickness h_ of the incoming sheet, and c in terms of the 
corresponding velocity ū_ , we obtain:  
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Dynamical Systems approach
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Our second-order ODE  

can also be written as a system of 2 first-order equations:  
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Fixed points:
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which translates to   

fixed points correspond to 
flat regions of the flow  

(the familiar balance between friction 
and gravity in uniform flow regions), 
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Of course!

or equivalently:   
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Stability of the fixed points
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is determined by the eigenvalues of the Jacobian matrix 
at the fixed points:

For the parameter values considered here we find that:

( ,0) is a saddle point

( ,0) (1,0) is an unstable node
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Phase portrait

saddle unstable 
node



The monoclinal wave corresponds to the
 heteroclinic connection between the fixed points:

So we have arrived at a dynamical systems view 
of the granular monoclinal wave

= 1

in the co-moving frame,
in dimensionless form.

What more can 
one ask for!



Concluding remarks

1. The elusive granular monoclinal wave 
has been found.

 Thus completing the 1-1 correspondence 
between the “Saint-Venant” waveforms in 
water and sand.



Concluding remarks

2. How feasible will it be to detect a 
granular monoclinal wave in practice?

 The experimental challenge is:
«Ηow to maximize the ratio Δh/Δξ »

Δh

Δξ

Here:  Δh = 0.006 m (= 6 mm)
           Δξ ≈ 30 m

        ratio Δh/Δξ ≈ 2 ·10 
‒4

This plot is for our “typical parameter 
values”. Let us also have a look at 
two actual experimental set-ups. 



Carborundum particles on the Manchester chute:
β = 0.63, L = 0.44 mm, ζ1 = 31.1◦ and ζ2 = 47.5◦

 (Edwards et al., 2017)

Hardly suitable for spotting 
monoclinal waves



Smooth glass beads on the chute in Marseille:

β = 0.136, L = 0.65 mm, ζ1 = 21.0◦ and ζ2 = 30.7◦

 (Pouliquen and Forterre, 2002)

Still challenging, but not impossible

Δh ≈ 3 cm

with  Δξ ≈ 30 m this gives

a ratio Δh/Δξ ≈ 1 ·10 
‒3



Concluding remarks

3. Last but not least, the Dynamical 
Systems approach can also be used 
to analyze the other waveforms.

 Roll waves
 Rising waves / granular jumps

 
Next  time, I hope! 



• D. Razis, G. Kanellopoulos & K. van der Weele, 
The granular monoclinal wave, J. Fluid Mech. 843 (2018).

Thank you for your 
attention

• D. Razis, G. Kanellopoulos & K. van der Weele, 
From monoclinal flood waves to roll waves and beyond: 
a phase-plane view of granular chute flow (preprint, 2018).

• D. Razis, A.N. Edwards, J.M.N.T. Gray & K. van der Weele,
Arrested coarsening of granular roll waves, Phys. Fluids 26 (2014).



The End



OK or K.O.?
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