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The art of doing research in physics

 We usually start with an observation of natural
phenomenon

* We the have a nice idea on “How this
phenomenon can be interpreted”

* We need model equations or simulation to build
a solid base on the idea.

* Then the idea, started from an observation and
moved on to a generic mathematical model, can
become a prototype for interpreting many
natural phenomena.... and this in the beauty of
the scientific method ......



Back on the “Brownian motion” :

the idea

* Observed first by Jan Ingenhousz 1785, but
was rediscovered by Brown in 1828.

* Pollen grains (from trees, plans) are organic
substances with life in them, the erratic
motion is expression of the power inherent to
life (the botanologist)-Brown

* Motion of small particles suspended in a fluid
due to bombardment by molecules in thermal
motion (the physicist)-Einstein.



Qualitative Idea
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Can we pose another question: How
long it will take a drank man to go
from the bar to his house?
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Random walk in 2D

e Choose a random value Ax in the interval
[-1,1] and Ay = 11— AY’




Question

 What will be the statistics of the distance <r(t_0)> at
time t_0 after many repetitions?
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More....

R> = (Ax, + Ay, + Ax, + Ay, + Ax, + Ay, +....+ Ax,, + Ay, )’
=(Ax)’ +...(Ayy) + .o+ 2(Ax,Ax,) + ...

< R >= \/N<T2>:‘VNTrms

* |f the distance of the drank man from the bar to his
house is 1000m and his step is 1m then you estimate
the number of steps that are necessary and assuming
that it takes several seconds for each step... you can
estimate how long it will take him to reach home....



Mean free path

* Atypical particle moving inside a fluid with density n of
molecules with radius a will travel a mean distance

A=<v>rt
between collisions, <v> is the mean velocity and t the
collision time.

* Let us assume an ideal tube of length L and particle
collision cross section a inside the fluid. Typical particle
will suffer

N =4rna’Ln
Collisions before exiting. From this relation we estimate the
mean free path PO

o 2
A n



Diffusion from random collisions

<R*>=N((r’>)=(@t/7)<r’>)=Dt

2 _
D~<r'>/t, t=4A/v__



Mathematical formula for Brownian motion
Langevin Formula

* Paul Langevin at 1908 modeled the
Brownian motion

* mX=-yx + R(t)

m is the mass of the particle,
x its Speed, y=6mna,
n=dynamic viscosity,

R(t)=randomly Fluctuating
force
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More on Langevin’s formula

d(d);x) %2 | = —yxi+ xF(2)

mxjc'zm[

— <X’ > |=—y<xx>+<xF(t)>

[d<x5c>
m
dt

<xF(t)>=<x><F((t)>=0

lm < x’ >:lkT
2 2

[d<xx>+ 4 <x5c>}=kT/m
dt m
< xx >:li<x2 >:k—T(e‘”/m+1)

2 dt 4



More on Langevin’s formula

<x’ >=2k—T t—ﬂ(l—e_”/m)




More on Langevin’s formula

* For

e Ballistic

t<<(y/m)”"

kT
<x’ >= —7/t
2m

t>>(y/m)”
Normal Diffusion

2kT kT
<xiP>= = l

4 3nna

T
<r‘>=3<yx’ >—k—t—Dt

o




Exercise 1: Perfume

1. If the diffusion constant in atmosphere at E

300 K isD = 10° m?/s, how far (in any
direction) will perfume particles

diffuse in 1 minute?

2. Approximately how far up will the perfume diffuse
in 1 minute?
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Exercise 1: Perfume

r .= <r2 >1/2 ;\/ITt
- \/‘ (105;2)s)(60s)

~6x107"m=6cm



The Diffusion equation

Fick’s law

concentration

The flux is proportional to the gradient in

J=-D<

a
on )

ot Ox

on _0%n
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x+Ax
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Solution of Diffusion Equation
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n(x,0)=0(x)

n(x,t) =
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How to treat formally the classical RW

Only position x of a particle is considered
Time step At constant (time plays dummy role, a simple counter)
Position of particle after n-steps (at time t, = nA4t): x,,

Ty, = ADxp + Az, 1+ Dz, >+ ... + Az F+ 2

Ax;: jump increment: random

X, initial position Xy AX, /
Need to specify X V X,
0

distribution of jump
increments g(Ax): prob. to make a jump Ax

- RW completely specified:
problem: determine solution, i.e. probability P(x,t,) that a particle is
at position x at time t, =n At
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How to treat formally the classical RW

e 1827: Brown observed that small particles (pollen
grains) in a fluid followed an erratic zig-zag path when
seen under the microscope:now called Brownian motion

— prototype of random walk.
* The solution of the RW is P(x,t), @/}7%}7 )\&&\
the probability for a particle to be ﬁ
\E7 \

at position x at time t, how to determine it ?

* Problem treated by

e 1900: Bachelier (PhD student of Poincare), modelling of
stock market temporal evolution.

e 1905: Einstein, modelling of Brownian motion.
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Einstein’s formalism

Assume RW in 1-D position space

Introduce time interval At fixed,
At << observation time,
At > typical interaction time for a grain fluid-molecule collision

The dust grain makes individual and subsequent jumps Ax,

the Ax follow a certain probability distribution g(Ax)

(i.e. the prob. for a jump Ax (with uncertainty dAx) is g(Ax) dAx)
qg(Ax) is normalized, s g(Ax) dAx = 1

and let it be symmetric, for simplicity (g(-Ax)=qg(Ax))
the dust grain makes only small jumps:

g(Ax) is non-zero only for small Ax

(peaked and narrow) /\\
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Einstein’s formalism, cont.

 We need to calculate P(x,t), the prob. for a particle to be at x
at time t

 Assume we knew P(x, t-At) at an earlier time t-At, then
P(x,t) = P(x-Ax, t-At) g(Ax)

the prob. to be at x at time t equals
the prob. to have been at x-Ax at time t - At ago and
to have made a jump Ax in time At

e we still must sum over all possible Ax,

P(x,t) = 7"0 P(x — Ax,t — At) q(Ax) dAx

RW equation in 1-D - integral equation, to be solved for
unknown P(x,t)

24



Einstein’s solution for P(x,t)

* Einstein-Bachelier equation

P(x,t) = Cjo P(x — Ax,t — At) g(Ax) dAx

* Only small jumps: g(Ax) non-zero only for small Ax,
also At is small ) Taylor expand P(x-Ax, t-At),
P(x — Az, t — At) = P(x,t) — AtOP(x,t) + ...

1
— Az 0;P(x,t) + 5A:1:2 aﬁp(a;, t) + ...

. Insert  P(z,t) = f P(z,t) q(Az)dDz — / At 0, P(z,t) (Az) dAz
— /Aa:@xP(x,t)q(Ax)dAac

+ %/AmQ 3323P(a:,t) q(Azx) dAzx

* Simplify P(xz,t) = P(x,t) — AtoP(x,t)
1 > 2

+ —o4A..0:P(x,t)
* Simple diffusion equation ! 2 AT

2

_ 9Azx 92
OrP(x,t) = DAL 0z P(x,t) -




Einstein’s solution, cont.

Integral equation turned to simple diffusion equation

2

o
8 P(z,t) = —B252P(z. ¢
tP(z,t) AL E (z,t)

2
. . . _ 9z
with diffusion constant = SAL
In infinite system, when particles all start at x=0 (P(x,0)=0(x))
solution is known, 2
P(gj’ t) — 1 e 4Dt

i.e. Gaussian, with time dependen. vaiiaice o N4 Dt
Mean square displacement:

(z2(t)) = [x2P(z,t) = 2Dt

(just the variance of the Gaussian, per aetinition)
) normal diffusion



Normal diffusion should be the usual case

Consider definition of RW
xn = Axp+ Axy_ 1+ ADxp_o+ ... +Ax1 4+ 20

Central Limit Theorem (CLT) of probability theory:
if all increments Ax;

- have finite mean p and variance o?

- are mutually independent

- and their number is large
then x, has Gaussian distribution (here =0, x,=0),

22

Pl t.) — 1  2tno2/At
(@, tn) \/27Ttn02/Ate

with variance t, a?/At  (n=t /At)

(of course the 42 (1)) = [ 22 P(x, tp) dx = variance = t,02/ At
MSD: = prop. to t, ) diffusion always normal

Assumptions of CLT somehow natural: normal diffusion should be the usual case !

27



Normal Diffusion

1. The mean square displacement
<r’>
t

<r’>=Dt or D=

2. P(x,t)--Gaussian (normal) distributions .

3. Diffusion equation

4. Langevin’s beautiful and simple formula can
model the normal diffusion



Anomalous....Diffusion

i)

\fﬂ /ﬁ
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An experiment

! video camera

AT
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What we see
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Levy walks and anomalous diffusion

26 July 2018
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Flow over an obstacle
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Conditions for anomalous diffusion

Central Limit Theorem (CLT) tries to make all diffusion normal

For anomalous diffusion, we must violate at least one of its necessary conditions:
(i) mean and/or variance of increments Ax; must be infinite, or

(ii) increments Ax; must be mutually dependent, or

(i) the total number of increments must be small, or

(iv) the time step At is not constant, anymore, but also random

Point (iv) is what exactly is done in Continuous Time Random Walk (CTRW)

Point (i) is realized by choice of particular distributions of increments g(Ax), the
Levy-distributions, with power-law tails:

g(Ax) » Ax® (for Ax large)

(Levy distributions make though sense only in the frame of CTRW)

Point (iii): small number of steps: less than 30
(with one step we would not talk about RW anymore)

Point (ii) is an interesting possibility, could physically often be motivated — has it
been tried ?
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Continuous Time Random Walk (CTRW)

Only position is considered (as in classical RW)

Position of particle after n-steps (at time t,): x,

xn = Axp+ Az, 1+ Ax,_» Axq1+ xqg
Ax;: jump increment; x,: initial position

— as in classical RW

New in CTRW: time t, after n steps:

th =A4At, + At,_ 1+ At,,_ >+ ... + Atq

At;: time needed to perform ith step: now random
) also t, random

Need now to specify distribution of jump increments Ax and of temporal

increments At :
q(Ax, At): probability to make a jump Ax and to spend a time At in the

jump

—> RW completely specified:

problem: determine solution, i.e. prob. P(x,t) that particle is at position x
at time t
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The distribution of increments

General form g(Ax, At): joint pdf, that specifies both the distribution of Ax and At
(Ax and At might be mutually dependent)

In practice, two cases are important and were investigated so far,
related to different interpretation of what At represents:

consider At to be a waiting or trapping time
q(Ax, At) = q(Ax) q(At)

Ax and At are independent:

- waiting/being trapped and spatial jumping are indeperfdent processes

- g(Ax) and g(At) can be specified independently of each other

Consider At to be the time spent in the spatial increment:
assume a constant velocity v, then
At = Ax/v
i.e. At is given by Ax and v, and
q(Ax, At) = oAt - Ax/v) q(Ax)

AX, At = Ax/v
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The distribution of increments, cont.

‘Waiting/trapping model’:

increments g(A4x) q(At)

first version of CTRW historically introduced (1965, Montroll & Weiss)

most published investigations/applications easiest to treat mathematically

can though model only sub-diffusion not useful for our intended applications in
confined plasma

(22(t)) o t7, with v < 1
‘velocity model’:

increments oAt - Ax/v) q(Ax)
(introduced by Shlesinger & Klafter 1989) can model super-diffusion
we focus mostly on the velocity model, in the following

(z2(t)) o< t7, with v > 1
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The CTRW equation |

To treat the CTRW analytically, we need to derive its equation:
waiting/trapping model: equation introduced in 1965 by Montroll and Weiss

velocity model: equation introduced in 1989 by Shlesinger & Klafter
Basically: generalize the Bachelier-Einstein equation

P(x,t) = C}O P(x — Ax,t — At) g(Ax) dAx

[Still, the equation must determine the probability P(x,t) for a particle to be at
position x at time t]

[CTRW can also be implemented numerically as a Monte-Carlo simulation: let the
computer trace the particles which make their random jumps]



The CTRW equation Il

Generalize the Bachelier Einstein equation

P(x,t) = (b)fo P(x — Ax,t — At) g(Ax)dAx

New symbol Q. Idea: connect Q(x,t) to Q(x-A x,t-A t) in the past:

Q(x,t) = Q(x-Ax, t-At) £ prob. to make a jump Ax in time At

Q(x,t) = Q(x-Ax, t-At) £ o(At - Ax/v) q(Ax)

Prob. to be at x at time t equals probability to have been at time t - At at position x
- Ax, and to have made a spatial jump Ax that took a time At

Still need to sum over all possible Ax, At

Q(x,t) = fda:({tdt Q(x—Ax,t—At) §(At—Ax/v) g(Ax)

very close generalization of Bachelier-Einstein



Infroduction |

@ Particle transport in wedakly turbulent environments (68/B << 1) has been
discussed extensively with the use of the

Fokker-Planck (FP) equation,
mostly in combination with the quasi-linear (QL) approximation

Strong turbulence is though also important and abundant

Recent research on the development of strong magnetic turbulence (6B/B ~: 1)
has shown the importance of two scenarios:
@ Extended current filaments (CF or multiple interacting CFs develop on fast time
scales info a strongly turbulent environment, fragmented info a collection of small
scale CFs.

Q Propagating Alfvén waves reinforce reconnection at existing CF and new CF are
formed.

H. lsliker ¢A.U.Th.) Fractional Transport EFTC 2017 2{20
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Infroduction |

In this context, we address two open questions:

@ s the FP equation still valid in strongly turbulent environments ?
@ How to model fransport when the FP approach is not valid anymore ?

@ |n the following

@ we consider alarge scale environment of strong turbulence

Q and we analyze statistically the energization of particles in this environment,
focusing on the high energy part (taily of the energy distribution.

@ we develop an appropriate fransport model

@ Applications: Solar flares, Earth’s magnetosphere, accretion disks, jets, ...,
may-be the plasma edge in tokamaks ?

H. Isliker (A.U.Th.) Fractional Transport EFTC 2017 3720
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The MHD furbulent environment |

@ We consider a strongly turbulent environment as it naturdlly results from the
nonlinear evolution of the MHD equations

@ We do not set up a specific reconnection geometry
@ 3D, nonlinear, resistive, compressible and normalized MHD equations

Bip=—V - p (1
dp=—V-(pu—BB)— VP —VB/2 2
0B=—Vv xE 3

9:(Sp) = =V - [Spu] )

with p the density, p the momentum density, u = p/p, P the thermal
pressure, B the magnetic field, E = —u x B 4 nJ the electric field, J =V x B
the current density,  the resistivity, S = P/p" the entropy, and I = 5/3 the
adiabatic index.

@ The MHD equations are solved numerically with the pseudo-spectral
method combined a the strong-stability-poreserving Runge Kutta scheme of

o Cartesian coordinafes
@ periodic boundary conditions

H. Isliker ¢A.U.Th.) Fractional Transport EFTC 2017 4120
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The MHD turbulent environment ||

e initial conditions: superposition of Alfvéen waves, with a Kolmogorov type
spectrum
@ constant background magnetic field 5 in the z-direction.

@ The mean vdlue of the initial magnetic perturbationis < b >= 0.68By, ifs
standard deviation is 0.38;, so that we indeed consider strong turbulence.

@ For the MHD tfurbulent environment to build, we let the MHD equations
evolve until the largest velocity component starts to exceed twice the
Alvféen speed.

@ The magnetic Reynolds number at final time is < |u| > {/n = 3.5 x 10°
@ The test-particle are tracked in a fixed snapshot of the MHD evolution

@ Also, we take intfo account anomalous resistivity effects by increasing the
resistivity 1o nan = 10005 locdlly when the current density J = |J| exceeds a
threshold Je;.

H. Isliker (A.U.Th.) Fractional Transport EFTC 2017 5420
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The MHD turbulent environment |l

Iso-contours of the supercritical current
density component J;

(positive in brown, negative in violet),
magnetic field lines (green):

clear fragmentation info a large
number of small-scale coherent
structures

H. Isliker (A.U.Th.) Fractional Transport EFTC 2017 6/20
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Test-particle simulations |

@ The relativistic guiding center equations (without collisions) are used for the
evolution of the position r and the pardllel component uj| of the relativistic
4d-velocity of the particles (X. Tao et dl., PoP 14, 092107 (2007))

ar _ 1 u|| ‘ p .
dUn q p» (u )
—— =——"B*. (| =-VB-E 6
dt moB;, gy ©

where B* = B + @unv x b, E*=E—To u”—]r = is the magnetic

moment, vy = 4/1+ &, B=[B|, b= B/B U, is the perpendlculcr component

of the relativistic 4—ve|ocn‘y, and g, mg are the particle charge and
rest-mass, respectively.

@ The test-particles we consider throughout are electrons. Inifially, all parficles
are located at random positions, they obey a Maxwellian distribution with
temperature T = 100 eV. The simulatfion boxis open, the particles can
escape from it when they reach any of its boundaries.

H. Isliker (A.U.Th.) Fractional Transport EFTC 2017 712
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Test-particle simulations |l

@ The acceleration process, is very efficient, and we consider a final time of
0.002s (7 x 10° gyration periods), at which the asymptotic state has already
been reached.

4 orbits of energetic particles (reaching The energy evolution of the same 4
10MeV), colored according to the energetic parficles
logarithm of their kinetic energy in keV

104

103

102.

W [keV]

101.

100.

10—1.

0.0000  0.0005  0.0010  0.0015
t[s]

The particles mostly gain energy in a number of sudden jumps in energy.
the energization process thus is localized,
and there is multiple energization at different current flaments

H. Isliker (A.U.Th.) Fractional Transport EFTC 2017 8/20
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Test-particle simulations |l

100_
the energy distribution at final time 1071
(blue): s 107
clear power law tail, R N
power-law index —1.51 — fastaidies
10781 __ power-law fit,
slope: -1.51
10—10 2 : | - - T
107> 103 107! 10! 103 10°
W [keV]

H. Isliker (A.U.Th.) Fractional Transport EFTC 2017 Q/20
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Transport coefficients and classical FP eqgquation |
Question 1
Can the test-particle results be reproduced as a solution of the FP equation ?

@ For simplification, we consider the FP equation only in energy space

a[Dn]] n

o o[-

at " oW oW | = Tt 7

n: the distribution function, W: kinefic energy, tusc: the escape fime.
D is the energy diffusion coefficient,

((W(t+ A1) = W(H))
D(W, 1) = - w, ®)

F is the energy convection coefficient,

(W(t+ A — W(T))
At B )

FW, 1) =

with At a small time-interval.
{...) denotes the conditional average that W(t) = W

H. Isliker (4.U.Th.) Fractional Transport EFTC 2017 10/ 20




Transport coefficients and classical FP equaftion |l

@ For the estimate of the coefficients F, D from the simulation data:
we monitor the particle energy at a number of fixed times separated by At,
the condifional averaging is done through binned statistics
e divide the energies of the particles af fime t into a number of logarithmically

equi-spaced bins and perform the requested averages separately for the
particles in each bin.

108 Z 1ot
The estimates of F(W) and D(W) af L 12 ~
t = 0.002s as function of the energy: 3 .
X 10° =
—> power-law shape, S 100 W 10 £
indices ar = 0.63 and ap = 1.31. 10° === fit, slope = 0.63 10"

— D(W)

.1071
== fit, slope = 1.31

1073

103 107! 10T 103 10°
W [keV]

@ Verificatfion of the estimates of F and D:
insert F and D, into the FP equation and solve it numerically in [0, oo)
(pseudospectral method, based on rational Chebyshev polynomials)

@ escape time estimate fo5c = 0.004 s (assuming the number of particles staying in
the box to decay exponentially)

H. Isliker (A.U.Th.) Fractional Transport EFTC 2017 11/20
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Transport coefficients and classical FP equation lll

102_

The solution of the FP equation up to
final time 0.002 s:

100°

10—2 i

n(W)

—> clear power-law tail, 1074 Fff;.rtfnning
— Initia
—> much flafter though than the 1oy = FR.fnal
test-particle simulations. o] === Sope —126'
— test-particles
10—10

104 102 109 102 10% 106
W [keV]

@ In Viahos et al., ApJ 827, L3, (2016) we have shown that the above
procedure can be successful:
Why does it fail here ?

H. lsliker (A.U.Th.) Fractional Transport EFTC 2017 12 /20
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Transport coefficients and classical FP equation IV

estimates of F and D are based on the
sample of energy increments

w; == Wi(t + AF) — W)

(with j the particle index)

The distribution of increments has a Loe] — P

power law tail (index —1.49) e

w [keV]

—> occasionally very large jumps in
energy space: Levy flights

W [keV]

0.0000 0.0005 0.0010 0.0015
ts]

@ energy increments with a power-law tail imply:

@ The estimates of F as a mean value and D as a variance theoretically are
infinite, and thus in practice they are very problematic
@ The prerequisites for deriving a FP equation are not fulfiled (see below)

H. Isliker (A.U.Th.) Fractional Transport EFTC 2017
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Fractional transport equation (FTE) |
Question 2
How to model fransport when the FP approach is not valid anymore ?

@ Generdl description of fransport in energy space: Chapman-Kolmogorov
equation

f
nW, ) = ]dwﬁ dr n(W — w, t — 7) G (W) G ()
+n(W, 0) [ T g (r)dr (10)
f

expresses a conservation law, and can be interpreted as a Continuous
Time Random Walk.

@ qgw: probability density for a particle to make a random walk step w in
energy,

g-: probability density for this step to be performed in a time interval r
® When both g, and g, have finite mean and variance (i.e. only small

increments) (as e.g. for Gaussians), then the FP equation can be derived
from Eq. (10) through Taylor-expansions

H. Isliker (A.U.Th) Fractional Transport EFTC 2017 14 120
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Fractional transport equation (FTE) I

@ Here, we do not make the assumption of small increments
@ distribution of increments, expressed in Fourier (k) and Laplace space (s):
@ distribution of energy increments: symmetric stable Levy distributions

8w (k) = exp(—alk|?). with0 < a < 2,
which exhibit a power-law tail in energy-space, gw(w) ~ 1/w'te for o < 2 and
w large,

and for a = 2 they are Gaussian distributions
@ waiting time distribution: one sided stable Levy distributions,
Gr = exp(—bs?), withb >0and0< g8 <1,
which have a power-law tail, g, ~ 1/711# for 8 < 1 and 7 large,
and for 8 = 1 they equal g (7) = é(r — b)

@ |In order to derive a meso-scopic transport equation, we consider the
fluidHimit: w, = are large, and thus k, s are smdall, so that the distributions of
increments can be approximated as
Qw ~ 1 — alk|®
G- ~ 1 — bs,

H. Isliker ¢A.U.Th.) Fractional Transport EFTC 2017 15/ 20
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Fractional tfransport equation (FTE) Il

@ Chapman Kolmogorov equation —> make Fourier Laplace fransform —>
apply convolution theorems —> insert distributions of increments in the fluid

limit:
bs®h(k, s) — bs?~'A(k,0) = —alk|*A(k, s) (1)
which can be written as a fractiondl transport equation (FTE)

bDfﬂ = G‘Dﬁmﬂ (]2)

with Df the Caputo fractional derivative of order 3, defined in Laplace
space as

L (Df?n) — SPR(W, s) — "~ n(W, 0) (13)

and Dy, the symmetric Riesz fractional derivative of order «, defined in
Fourier space as

F (Diwn) = —k|* Ak, 1) (14)
@ We need to estimate two parameter sets, o, aand 8, b

H. Isliker ¢(4.U.Th.) Fractional Transport EFTC 2017 16§20
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Fractional transport equation (FTE) IV

@ the order of the fractional derivatives (a, 3) is given by the index of the
power-law tail of the distribution of increments, if any
@ otherwise, if the mean and variance of the increments are finite, then the
classical FP equation is appropriate.

the distribution of energy increments
pw(w) has a power-law tail,

its index z yields
oa=—27Z— 1 = 049 10-6] — PW)

=== power-law fit, slope = -1.49

107 107* 1072 10° 102 104
w [keV]

@ Assecond method to determine a and also a, we use the characteristic

function approach:
a = 0.49 (as before) and a = 0.36

ok N w

|
-

In(=In(1Gu(K)I1?))

-2 —— In(=In(|du(K)I?))
===_linear fit, slope 0.49

-5.0 -25 00 25 50 7.5 100
Ink

H. Isliker (A.U.Th.) Fractional Transport EFTC 2017
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Fractional transport equation (FTE) V

@ "Waiting times": We have considered energy increments over a fixed time
interval At,
—> we use ‘observation/sampling times’, not “waifing fimes’

> "'waiting time" distribution ,OT(T) = §(t — Al),
—> jtfollows that 7 = 1 and b = Af.

e This approach seems unavoidable if the test-particle data are given in the form
of fime-series, where there is no direct information on the waiting fimes between
scattering events.

@ Thus, we consider the fractional fransport equation to have a first order
derivative in time-direction and a fractional derivative in energy direction,

dn = (a/B)Dfyyn — nf tase, (15)

where we dlso have added an escape term.
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Fractional transport equation (FTE) VI

@ numerical solution of the FTE:
Grunwald-Letnikov definition of fractional derivatives (e.g.
(Kilbas et al.(2006))), in the matrix formulation of
(Podlubny et al.(2009), Podlubny et al.(2013)):
same non equi-distant grid-points in [0, co) as above for the FP equation

100.
1072
Solution of the FTE at 1 = 0.002 s:
the FTE reproduces very well the g 107
. . < .
powerlaw fail from the test-particle 10-6| — FTE. final
; i I : — initial
simulations in its entire extent | — testoparticies
107% ___ bower-law fit,
slope: -1.51
10—10 1

104 102 10° 102  10* 10
W [keV]
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We posed two gquestions:

Is the FP equation still valid in strongly turbulent environments ?
Answer: No |

How to model fransport when the FP approach is not valid anymore ?
Answer: With a kind of fractional transport equation (work is still needed)

26 July 2018

statistical andlysis of the distribution of energy increments:

—> dllows deciding whether a FP or a FTE is appropriate

—> in the FP case the estimate of the transport coefficients is based on it

—> In the FTE case, the form of the FTE and its parameters (the order of the
fractional derivative efc), are directly inferred from the simulafion data
(and thus they are not universal or unique).

simplifying assumpption:

instead of "waiting times” we used "observation/sampling times’

—> did not affect the success of the FIE approach
We made no effort to model the low energy part of the distribution
published in Phys. Rev. Lett. 119, 045101 (2017)
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How far can we go by using the initial ideas of Fermi

The strong turbulent environment can be modeled in line with the initial
idea of Fermi, where the strong scatterers can replace the "magnetic

clouds” and the particles gain energy stochastically (second order Fermi)
Pisokas et al. 2017 [Pisokas et al. (2017)]

15 20 25 30 a8
Time [sec]
L ‘) dmt - Y L i - "I o _ " " . " .
Loukas Vlahos® (Department of Physics, ArisOn Turbulent Reconnection in the Solar Coro
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How far can we go by using the initial ideas of Fermi

Using typical parameters, length of the box L = 10°%cm, density

n = 10°cm™3 magnetic field 100 Gauss, the temperature T = 100eV and
characteristic distance between the scatterers A, =~ 108cm the
characteristic time for the particles to reach an asymptotic state will be
~ 10secs. The plasma will be heated and the tail has been accelerated to
very high energies stochastically. The mean escape time from the box is
approximately equal with the acceleration time (around 10 secs) and the
power law reaches asymptotically an index around 2!

10° — 10
’b&g;ﬁ& -—o- |nitial distribution
“Pan, —— Escape distribution
g - - - Power—law fit, k=2.2 12
107%
w0t
B
g £
107" : *
!i XI 107
i ‘\1
10-;0“2 107 - 10° 10 1 1072 10° 10° 10!
W [eV] t, o, [520]
kin esc
- : —k
Fermi predicted that F(W) ~ W™K k =1+ tae/tese
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Energy transport for the stochastic Fermi acceleration

How we will estimate the transport coefficients?
We use the orbits and the formulae

< (W(t+ At)— W(t))? >w

Dww (W) = 2At
< W f—l—At — Wi(t > W
Fu () - < W+ 80— W
10'® 10°

—o—Diffusion coefficient
Power—law fit, 8y = 1.51

[|—&—Convection coefficient
__ _Power-lawfit, 8. =059
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Energy transport for the stochastic Fermi acceleration

Using the transport coefficients and the estimated mean escape time we
solve the transport equation

Of(W,t) _ B[Fw(W)F(W,¢t)] . 2Dy (W)F(W, )] F(W, 1)

- (15)
ot oW OW? fose
10° ; :
—o— Initial distribution
Fo80g, —— Distribution after t = 20 sec
i “Peg - - -Power-law fit, z = 2.1
1071 o —— Fokker—Planck solution
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How far can we go by using the initial ideas of Fermi

Vlahos et al. Apj Letters 2016, Isliker et al. Ap. J. 2017

[Vlahos et al. (2016), Isliker et al. (2017)]

The strong turbulent environment can be modeled in line with the initial
idea of Fermi, where the Reconnecting Current Sheets can replace the
"magnetic clouds” and the particles gain energy systematically (First order

Fermi). The crucial parameter here is the mean distance of the scatterers
ASC

AW =| q | Ecirlerr

The most important finding in this study is the failure of the FP equation
to reproduce the test particle results of a systematic accelerator

N 2 2 = - ) T P Aoumf . DA i R — _ ~
Loukas Vlahos® (Department of Physics, ArisOn Turbulent Reconnection in the Solar Coro
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Failure of Fokker-Planck equation

The failure of the solution of the FP equation to represent the results from
the test particle simulation
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An open problem....Diffusion of Cosmic Rays through a fractal
Universe: Moving through voids and localized action on gallaxies
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Conclusions

 We have discussed the importance of random
walk in nature and its relation to normal
diffusion in stable systems.

 We have discussed a prototype of stochastic
differential equations-The Langevin equation.

 We introduced the notions of anomalous
diffusion-Levy flights and continuous random
walk- all these are important for turbulent
systems.




