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© Complex networks from multivariate time series
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State space reconstruction (embedding)
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underlying system
is deterministic x; = h(sl-)
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State space reconstruction (embedding)

state space
Embedding R™

X =F(x)

Assume that the
underlying system
is deterministic

Method of delays
X = [ X ior Kl

Parameters

embedding dimension m
delay time 7

time window length z,,

R 7,=(m-1)t

observed
quality
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A single observable

Observation of an underlying
system variable, y, = h(s,)

Underlying dynamical system
Su1 =fls)) or $=fis), s;€ R4

or stochastic process

Si1 = f(su€) or $=f(s,€), s, € R4

Reconstruction of the dynamics

Verr = F(Ve) = F(Vo Yets o Yemsd) Ve €R
or

Verr = F(Ve) = F(Ve Yeor o Vetmo1ye)

m: embedding dimension
T: delay time

s, : statevariable, e.g. representing the brain activity
y;: observed dynamics, e.g. EEG

Yt 5 Yt 4 Yt-3 Yt 2 Yt 1 Yt Yt+l
delay embedding (uniform)
t-5 t4 t3 t-2 t-1 t t+1
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Yeer= F(Ye, Yed)
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Yeer= F(Ye, Yen Xor Xi3)
?

t-5 t-4 t-3 t-2 t-1 ty t+l
!
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zt—5 Zt—4 Zt-3 Zt»2 Zt-l Zt Zt+1

Yeer= F(Ye, Yerr Xos Z449)

t-5 t-4 t-3 t-2 t-1 ty t+1
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© Dependence measures in univariate time series
© |Interdependence in multivariate time series
© Complex networks from multivariate time series

© High-dimensional time series: Implications and solutions
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Ye=5t
s=1-1.4s,,2 +0.3s,,
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Ye=5t
s=1-1.4s,,2 +0.3s,,

Yt-5 Yt-4 Yt-3 Y[-Z Yt—l Yt Yt+1

{

Are Y; and Y;_1 correlated?
Are Y; and Y;_» correlated?

t-5 t-4 t-3 t-2 t-1 t t+1
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Are X; and X;_1 linearly correlated?
Are X; and X;_5 linearly correlated?

time series

x(t)
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Autocorrelation r(7) = r(Xs; Xe—r)
Are X; and X;_1 linearly correlated? r(1) = r(Xs; Xe—1) # 07 Yes
Are X; and X;_» linearly correlated? r(2) = r(Xs; Xe—2) # 07 Yes

r(T) = r(Xe; Xe—r) = 75 2oty 1(xe — %) (xe—r — X) /5%

autocorrelation time series
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Are X; and X;_» directly linearly correlated?

autocorrelation
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Partial autocorrelation ¢, - = r(Xe; Xe—r | Xe—1, -+ ., Xe—rt1)
Are X; and X;_» directly linearly correlated?
Are X; and X;_» linearly correlated given X;_17

r(Xe; Xe—2|Xe—1) #0?7  No

autocorrelation partial autocorrelation
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Are X; and X;_1 linearly and nonlinearly correlated?

Are X; and X;_> linearly and nonlinearly correlated?

time series
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Mutual information /(1) = I(X¢; X¢—r)

Are X; and X;_1 linearly and nonlinearly correlated? /(X; X¢—1) # 07 Yes

Are X; and X;_» linearly and nonlinearly correlated? /(X; X¢—2) # 07 Yes
1(7) = 1(X¢, Xe—r) = H(X:) + H(Xe—7) — H(X¢, Xe—7)

B Z (X x )|O PxeXe_p (Xt,Xe—7)
= Zaxexe—r PXeXer \Xt; Xt—7) 108 px, (xe)px, _, (xe—r)

H(X) = — Y2, p(x) log p(x)

Mutual information time series
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Are X; and X;_» directly linearly and nonlinearly correlated?

Mutual information
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Conditional mutual information Ic(7) = I(X¢; Xe—r | Xe—1, -+, Xe—rt1)
Are X; and X;_» directly linearly and nonlinearly correlated?
Are X; and X;_» linearly and nonlinearly correlated given X; 17

I(Xt; Xe—2|Xt—1) #07  No

Mutual information Conditional Mutual Information
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Are X; and X;_» directly linearly correlated?
r(Xe; Xe—2|Xe—1) # 0?7  No

Are X; and X;_; directly linearly or/and nonlinearly correlated?
I(Xt; Xe—2|Xt—1) #0?7  No

partial autocorrelation Conditional Mutual Information
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© Dependence measures in univariate time series
@ Interdependence in multivariate time series
© Complex networks from multivariate time series

© High-dimensional time series: Implications and solutions
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Are X; and Yiy1 correlated?
Are X;_3 and Y41 correlated?

t-5 t-4 t-3 t-2 t-1 t

t+1
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Zt 5 Zt 4 Zf—_? ZI' -2 Zt 1 Zt Zt+1
Are X; and Yiy1 correlated? Are X; and Y;i1 correlated?
Are X;_3 and Y41 correlated? Are X;_3 and Y1 correlated?
t-5 t-4 t-3 t-2 t-1 t t+1 t-5 t-4 t-3 t-2 t-1 t t+1
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Are X; and Y1 linearly correlated?

Are X;_3 and Y1 linearly correlated?

20 40 60 80 100 120 140 160 180 200
time step t [sampling time=1.000000]
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Cross-correlation rxy (7) = r(Xt; Yeir)
Are X; and Yiiq linearly correlated? r(1) = r(X¢; Yer1) # 07  Yes
Are Xi_3 and Yiy1 linearly correlated? r(4) = r(X; Yeya) #07  Yes

rxy(7) = r(Xe; Yeqr) = ﬁ ?;{(Xt — X)(Yetr — ¥)/(sxsy)

cross correlation
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T time step t [sampling time=1.000000]
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Cross-mutual information Ixy (7) = I(X¢; Yiqr)
Are X; and Yi41 linearly and nonlinearly correlated?  Yes

Are X;_3 and Y1 linearly and nonlinearly correlated?  Yes

Ixy (1) = I(Xt, Yeir) = H(Xe) + H(Yeir) — H()(Qv Yt+)r)
p. - Xt Yetr
= ZXt:YPrT PX:Yeir (Xt’ yH‘T) log Ib:(t)<ytt)+PY—t:.r(t}/+t+r)

mutual information

W hos

x(t)

0
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time step t [sampling time=1.000000]
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Are X; and Yy directly correlated?
Are X;_3 and Yyy1 directly correlated?

RAVVENINR ik

R B g e L arrg

x(t)
x(t)

20 40 60 80 100 120 140 160 18 20 40 60 80 100 120 140 160 180 200
time step t [sampling time=1.000000] time step t [sampling time=1.000000]
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Are X; and Yy41 directly correlated?
Are X:_3 and Yi41 directly correlated?

Partial Cross-correlation rxy|z(0) = r(X:; Yi|Z:)

RAVVENINR ik

R B g e L arrg

x(t)
x(t)

20 40 60 80 100 120 140 160 18 20 40 60 80 100 120 140 160 180 200
time step t [sampling time=1.000000] time step t [sampling time=1.000000]
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Are X; and Yy41 directly correlated?
Are X:_3 and Yi41 directly correlated?

Partial Cross-correlation rxy|z(0) = r(X:; Yi|Z:) lags?

RAVVENINR ik

x(t)
x(t)

20 40 60 80 100 120 140 160 18 20 40 60 80 100 120 140 160 180 200
time step t [sampling time=1.000000] time step t [sampling time=1.000000]
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x(t)

Are X; and Yy41 directly correlated?
Are X:_3 and Yi41 directly correlated?

Partial Cross-correlation rxy|z(0) = r(X:; Yi|Z:) lags?
Partial Cross-mutual information Ixy|z(0) = /(X¢; Yi|Z;) lags?

RAVVENINR ik

x(t)

20 40 60 80 100 120 140 160 18 20 40 60 80 100 120 140 160 180 200
time step t [sampling time=1.000000] time step t [sampling time=1.000000]
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rxy(0) # 0 or Ixy(0) # 0: = correlation of x; and y;

— systems X and Y are correlated, X ~ Y

Kugiumtzis Dimitris Time Series and Networks



rxy(0) # 0 or Ixy(0) # 0: = correlation of x; and y;

— systems X and Y are correlated, X ~ Y

rxy(7) # 0 or Ixy(7) #0: == correlation of x; and y;,

= X effects the futureof ¥, X — Y
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rxy(0) # 0 or Ixy(0) # 0: = correlation of x; and y;

— systems X and Y are correlated, X ~ Y

rxy(7) # 0 or Ixy(7) #0: == correlation of x; and y;,

= X effects the futureof ¥, X — Y

rxy(—T) 75 0 or /Xy(—T) 75 0: — Y > X
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rxy(0) # 0 or Ixy(0) # 0: = correlation of x; and y;

— systems X and Y are correlated, X ~ Y

rxy(7) # 0 or Ixy(7) #0: == correlation of x; and y;,

—> X effects the future of ¥, X —= Y
rxy(=7) #Oor Ixy(-7) #0: = Y =X

Thus rxy(7) and Ixy(7) indicate the direction of interaction.
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rxy(0) # 0 or Ixy(0) # 0: = correlation of x; and y;

— systems X and Y are correlated, X ~ Y

rxy(7) # 0 or Ixy(7) #0: == correlation of x; and y;,

= X effects the future of Y, X — Y
rxy(—T) 75 0 or /Xy(—T) 75 0: — Y > X
Thus rxy(7) and Ixy(7) indicate the direction of interaction.

Can they also be used as causality measures?
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rxy(0) # 0 or Ixy(0) # 0: = correlation of x; and y;

— systems X and Y are correlated, X ~ Y

rxy(7) # 0 or Ixy(7) #0: == correlation of x; and y;,

= X effects the future of Y, X — Y
rxy(—T) 75 0 or /Xy(—T) 75 0: — Y > X
Thus rxy(7) and Ixy(7) indicate the direction of interaction.

Can they also be used as causality measures?
Not the most appropriate, but they have been used in many studies
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Example: Returns for USA, UnitedKingdom, Greece and Australia.
X:AUS, Y:GRE

v (0) = 0.58,..
Xy{l! =0. 2 ""

Australia returns Greece retums

0.05
o) =019
02 . . . . . . 02 . . . . .
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
t t
returns: Is the measure significant?
x¢ = log(yt) — log(ye-1) Can | draw a link? (directed/non-directed)
USA returns UnitedKingdom returns
0.15 T T 0.15
0.1

0.05

[y LTRSS

x(t)

-0.05

-0.1

-0.15

L L L L 02 L L L
200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

t t
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Significance randomization test for a correlation / causality measure g,
Ho:g=0 Hi:g#0
© Generate M resampled (surrogate) time series, each by shifting the
original observations with a random time step w:

original time series: {x;} = {x1,X2,..., Xy}
i-th surrogate time series:
DY = X1y Xt 2« s Xy XLy« -y Xw— 1 Xy }
@ Compute the statistic g on the original pair, gg, and on the M
surrogate pairs, gi,...,qm,

e.g. qo = rxy(7) = Corr(x¢, yr1r) and q; = Corr(x}', y7i.)

@ If qp is at the tails of the empirical null distribution formed by
q1,---,qm, reject Ho.
Using rank ordering: for a two-sided test, the p-value of the test is

rep —0.326 ) M1

2M+1+0.3480 26 i rg <%
_ e =Y. H M+1

?(17 Witrosas) fao = =5

Jos 0w o0 o oor ooz oo 0o oo 002 001 o oot 002

Time Series and Networks
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Example: Returns for USA, UnitedKingdom, Greece and Australia.
Correlation matrix for delay 1, rxy(1)

0.382  0.333 0.596
0.049 0.039 0.303
0.096 0.001 0.190
0.031 —-0.001 -0.021

R(1) =

Randomization significance test for rxy (1) (M = 1000)

Matrix of p-values Adjacency matrix

0.0013 0.0013 0.0033 111

0.0732 0.1991 0.0013 0 01

P(R(1)) = 0.0073 0.8901 0.0033 A= 10 1
0.2450 0.9760 0.4028 000

For significance level, say a = 0.05, there may be p < o more
often than it should be due to multiple testing.
Correction with e.g. False Discovery Rate (FDR)
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Example: Returns for USA, UnitedKingdom, Greece and Australia.
Correlation matrix for delay 1, rxy(1)

0.382  0.333 0.596

Gre A
R(1) = 0.049 0.039 0.303
~ 1 0.006 0.001 0.190
0.031 -0.001 -0.021 Australia

Randomization significance test for rxy (1) (M = 1000)

Matrix of p-values Adjacency matrix

0.0013 0.0013 0.0033 111

0.0732 0.1991 0.0013 0 01

PR()) = 0.0073 0.8901 0.0033 A= 10 1
0.2450 0.9760 0.4028 000

For significance level, say o = 0.05, there may be p < a more
often than it should be due to multiple testing.
Correction with e.g. False Discovery Rate (FDR)
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Linear causality measures (direct and indirect)

Idea of Granger causality X — Y [Granger 1969]:
predict Y better when including X in the regression model.

Granger Causality Index (GCl) [Brandt & Williams 2007]

Bivariate time series {x¢, y+}7_;
driving system: X, response system: Y

Model 1 (restricted, R, X absent in the model):
p
Ye = Z aiYt—i + €Rrt
i=1
Model 2 (unrestricted, U, X present in the model):

P P
ye= aiy-i+ Y bixei+eys
i—1 i—1

GClxy >0= X — Y holds

Kugiumtzis Dimitris Time Series and Networks



Parametric significance test for GCI

GClx,y >0 7 = Significance test

If X does not Granger causes Y then the contribution of X-lags in
the unrestricted model should be insignificant =
the terms of X should be insignificant

Ho: b =0, foralli=1,...,p
Hi: b #0, foranyof i=1,...,p

Snedecor-Fisher test (F-test):

(SSER —SSEY)/p
SSEY /ndf

SSE: sum of squared errors
ndf: number of degrees of freedoms, ndf = (n — p) — 2p,

n — p: number of equations,
2p: number of coefficients in the U-model.
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Linear causality measures (direct)

Conditional Granger Causality Index (CGCI)

K time series {x¢, ¥+ }7_q and {z:}7_; = {z1,6, 20,6, ., ZK—2,¢ } 71
driving system: X, response system: Y/,
conditioning on system Z, Z = {Z1, 25, ..., Zx—2}

Model 1 (restricted, R, X absent in the model):
P P
Yo=Y aiyeit+ > Aize i+ ery
i=1 i=1
Model 2 (unrestricted, U, X present in the model):
P P P
ye= Y aiye—i+ > bixe i+ Y Azii+eyy
i=1 i=1 i=1

Var(égr,¢)

CGClI =In—+—=
YET  Var(ey,)

Kugiumtzis Dimitris Time Series and Networks



Parametric significance test for CGCI

CGClx_yz >0 ? = Significance test as for GCI
Ho: bj=0, foralli=1,...,p
Hi: b #0, foranyof i=1,....p
(SSER — SSEY) /p
SSEY /ndf

ndf = (n — p) — Kp,
n — p: number of equations,
Kp: number of coefficients in the U-model.
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Model order and embedding parameters

VAR model for Y

p p
Ye = Z AYe—i+ Z bixi—i + eyt
i=1 i=1

Kugiumtzis Dimitris Time Series and Networks



Model order and embedding parameters

VAR model for Y
p p
Ye = Z AYe—i+ Z bixi—i + eyt
i=1 i=1

p p

Yi+1 = Z aiyi—it1+ Z bixt—it1 + ey t+1
i1 i=1

Ye+1 is given in terms of y: = [y, Yt—1,. .., Yt—p+1] and
Xt = [Xt,Xt—l, e 7Xt—p+1]r Yt+1 = F(ytaxt)
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Model order and embedding parameters

VAR model for Y

p p
Ye = Z AYe—i+ Z bixi—i + eyt
i=1 i=1

p p
Yi+1 = Z aiyi—it1+ Z bixt—it1 + ey t+1
i1 i=1

Ye+1 is given in terms of y: = [y, Yt—1,. .., Yt—p+1] and

Xt = [Xt,Xt—l, cee ,Xt—p+1], Yi+1 = F(ytaxt)

Let the lagstepbe 7> 1 =yt =[ye,Yt—r,-- s Ve—(p-1)rl:
7, p: embedding parameters (generally different for X and Y)
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Model order and embedding parameters

VAR model for Y

p p
Ye = Z AYe—i+ Z bixi—i + eyt
i—1 i—1

p p
Yi+1 = Z aiyi—it1+ Z bixt—it1 + ey t+1
i=1 i=1
Ye+1 is given in terms of y: = [y, Yt—1,. .., Yt—p+1] and
Xt = [Xt, Xt—1y--- 7Xt—p+1]r Yt+1 = F(Yt, Xt)

Let the lagstepbe 7> 1 =yt =[ye,Yt—r,-- s Ve—(p-1)rl:
7, p: embedding parameters (generally different for X and Y)

State space reconstruction:
Xt = [Xey Xe—rps - - - ,xt_(mx_l)TX]’, embedding parameters: my, 7y
Yt = [Vt Yt—rys -+, Ye—(m,~1)r,]', embedding parameters: m,,7,

Ye+1: future state of Y
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Nonlinear causality measures (direct and indirect)

Transfer Entropy (TE) [Schreiber, 2000]
Measure the effect of X on Y at one time step ahead, accounting
(conditioning) for the effect from its own current state
TEx sy = I(yer1: Xelys)
= H(xtvyt) - H(yt+17xt7 Yt) + H(yt—f—l,Yt) - H(yt)

p(yt+1|xt’Yt)
= > p(yt+1,Xt,Yt) log ———=
2 Pty xeye)log = S
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Nonlinear causality measures (direct and indirect)

Transfer Entropy (TE) [Schreiber, 2000]

Measure the effect of X on Y at one time step ahead, accounting
(conditioning) for the effect from its own current state

TEx_y = I(yes1: Xe|ye)
= H(xtvyt) - H(yt+17xt7 Yt) + H(yt—f—l,Yt) - H(yt)

p(yt+1|xt’Yt)
= > p(yt+1,Xt,Yt) log ———=
2 Pty xeye)log = S

Joint entropies (and distributions) can have high dimension!

Entropy estimates from nearest neighbors [Kraskov et al, 2004]
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Nonlinear causality measures (direct and indirect)

Transfer Entropy (TE) [Schreiber, 2000]

Measure the effect of X on Y at one time step ahead, accounting
(conditioning) for the effect from its own current state

TEx_y = I(yes1: Xe|ye)
= H(xtvyt) - H(yt+17xt7 Yt) + H(yt—f—l,Yt) - H(yt)

p(yt+1|xt’Yt)
= > p(yt+1,Xt,Yt) log ———=
2 Pty xeye)log = S

Joint entropies (and distributions) can have high dimension!

Entropy estimates from nearest neighbors [Kraskov et al, 2004]

TE is equivalent to GCl when the stochastic process of (X, Y) is
Gaussian [Barnett et al, PRE 2009]
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Nonlinear causality measures (direct)

driving system: X, response system: Y/,
conditioning on system Z, Z = {7y, 2Z>,...,Zx_»}
join all K — 2 z-reconstructed vectors: Zy = [z1¢,...,2ZK_2,¢]

Partial Transfer Entropy (PTE) [Vakorin et al, 2009; Papana et al, 2012]

Measure the effect of X on Y at T times ahead, accounting
(conditioning) for the effect from its own current state and the
current state of the other variables except X.

PTEx vz = I(Ye+1i Xe|Ys, Zt)
= H(xtayt‘zt) - H(yt+17xf7yt|zt) + H(yf-‘rlayt‘zt) - H(ytlzt)

Joint entropies (and distributions) can have very high dimension!
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Example: Nonlinear stochastic process

Nonlinear stochastic map:

x1,e = 34xq-1(1— x? 1 l)efxlzvf—1 + 0.4e;
2
xor = 3.4xp:1(1— ijt_l)efxz’ffl +0.5x1,t—1x0,+—1 + 0.4e ;
2
x3r = 3.4x3-1(1— X32,t,1)e_x3’t*1 +0.3x0,¢-1 + O.5x127t,1 +0.4e3;

[Model 7, Gourevich et al, 2006]

True connectivity network

g
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Example: Nonlinear stochastic process

Nonlinear stochastic map:

x1,e = 34xq-1(1— x? 1 l)efxlzvf—1 + 0.4e;
2
xor = 3.4xp:1(1— ijt_l)efxz’ffl +0.5x1,t—1x0,+—1 + 0.4e ;
2
x3r = 3.4x3-1(1— X32,t,1)e_x3’t*1 +0.3x0,¢-1 + O.5x127t,1 +0.4e3;

[Model 7, Gourevich et al, 2006]

True connectivity network

g

Estimation of the correct causality effects from the time series?
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© Dependence measures in univariate time series
© |Interdependence in multivariate time series
© Complex networks from multivariate time series

© High-dimensional time series: Implications and solutions
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Example: Games of world cup 1930 - 2006

fereece

“Neth-East Indies

N
“Trinidad and Tobago
Cuba

Slovenia
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Example: Flight connections

Source: https://au.pinterest.com/pin/488077678338752549/
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Example: Greek domestic flight connections

map courtesy of GNTO www.gnto.gr
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Example: Bullying causal effects

bullying

v
persecutory
Moy ' ideation )

Pamve

. mood
depression i i
sleep

problems

hallucinations

Source: https://doi.org/10.1093/schbul/sbx013
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Example: Global financial market

MSCI market capitalization weighted index

e —— Wa
""’W Belgium|
Finland
e s e ——— T T France]

German
T D1
Ireland|

. Ital
2 therlands|

N

g e e e Notwa

2 “"-"\\,\N\Ponugal
I
B, Spain|
9] ""Wsweden
g i itzerland
itg dKingdom)
USA
Canada
Mwmalia
e e Ve _HongKong
s Japan
Wealand
M ‘ Singapore]
200 400 600 800 1000 1200
daily, period 5/3/2004 - 5/3/2009
Data source: https://www.msci.com/market-cap-weighted-indexes Network ?

Kugiumtzis Di i Time Series and Networks



Example: Brain dynamical system

O
oy YY)
A Ty
%, ArAA,
W i

;@
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A . A iy A n AR
v Y . e ArmAAMARANANNAL A

_— Y, v AN K10
L L £ L
5 10 15 20 25 30
time [sec]
Data source: https://physionet.org/pn6/chbmit/chb08/ Network.,?
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Complex networks
from
multivariate time series

Estimated network
(weighted connections)

I Multivariate time series |

Causality

MMWMN measures

XDV, X>v|z

=

Xy Yo
(X, Yero)

" —————— cC|, coC

TE, PTE

50 100 150 200 250 300 350 400 450 500
time stept
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How to assess the presence of a connection?

Three possible ways to convert a network of weighted connections
(the Granger causality measure) to a network of binary
connections:

binary
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How to assess the presence of a connection?

Three possible ways to convert a network of weighted connections
(the Granger causality measure) to a network of binary
connections:

binary

© Threshold on the measure magnitude, q(i — j) > thr.
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How to assess the presence of a connection?

Three possible ways to convert a network of weighted connections
(the Granger causality measure) to a network of binary
connections:

binary

© Threshold on the measure magnitude, q(i — j) > thr.
@ Threshold on the network density, only the d% largest
q(i = j)-
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How to assess the presence of a connection?

Three possible ways to convert a network of weighted connections
(the Granger causality measure) to a network of binary
connections:

binary

© Threshold on the measure magnitude, q(i — j) > thr.

@ Threshold on the network density, only the d% largest
q(i = j)-

© Significance test on each q(i — j). Threshold, e.g. a = 0.05
on the p-value of the test.
Parametric or resampling test (resampling test for a nonlinear
causality measure).
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The problem of multiple testing

Significance resampling test on q(i — j) for each pair (X, X;).
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The problem of multiple testing

Significance resampling test on q(i — j) for each pair (X, X;).

K(K — 1) significance tests = Correction for multiple testing
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The problem of multiple testing

Significance resampling test on q(i — j) for each pair (X, X;).

K(K — 1) significance tests = Correction for multiple testing

Popular choice:

False Discovery Rate (FDR) [Benjamini & Hochberg, 1995]

o K(K —1) p-values in ascending order: p(1), p2); - - - s P(K(K—1))
@ Rejection for the k tests with p < p(,), where py is the
largest p-value for which p(y < ka/(K(K — 1)).
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The problem of multiple testing

Significance resampling test on q(i — j) for each pair (X, X;).

K(K — 1) significance tests = Correction for multiple testing

Popular choice:

False Discovery Rate (FDR) [Benjamini & Hochberg, 1995]

o K(K —1) p-values in ascending order: p(1), p2); - - - s P(K(K—1))
@ Rejection for the k tests with p < p(,), where py is the
largest p-value for which p(y < ka/(K(K — 1)).

Small p-value can only be obtained with large number of surrogates
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The problem of multiple testing

Significance resampling test on q(i — j) for each pair (X, X;).

K(K — 1) significance tests = Correction for multiple testing

Popular choice:

False Discovery Rate (FDR) [Benjamini & Hochberg, 1995]

o K(K —1) p-values in ascending order: p(1), p2); - - - s P(K(K—1))
@ Rejection for the k tests with p < p(,), where py is the
largest p-value for which p(y < ka/(K(K — 1)).

Small p-value can only be obtained with large number of surrogates

When K gets large, FDR requires huge M (impractical).
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Example: coupled Henon maps

X1,t+1 =
Xit+1 =

XK, t+1 =

1.4 — 3, + 0.3x1,¢1

1.4 — (0.5C(xi—1.t + Xiy1.0) + (1 — C)x;t)> +0.3% ¢ 1

1.4 — xg ¢ + 0.3xK 11

C: coupling strength [Politi & Torcini, 1992]

Network structure

for K =5

=

5
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Example, TE, K =5

Binary network from Threshold (thr=0.01)
—2

True network

Weighted network from TE(m=2,tau=1)
Binary network from Density (dens=0.30)
-~ ‘7£

o

Binary network from Si mﬂcage (alpha=0.050)
B

150 20 20 300
time stept



© Dependence measures in univariate time series
© |Interdependence in multivariate time series
© Complex networks from multivariate time series

@ High-dimensional time series: Implications and solutions
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Example, TE, K =

True network Binary network from Threshokd (thr=0,01)

Weighted network from TE(m=2 taus1)

Binary network from FDR.Signficance (aipha=0.100)

2
time step 1t

Dimitris



What if there are many observed variables?

The curse of dimensionality:

e For FDR, in general M ~ K(K — 1)/a. When K gets large,
huge M may be required (impractical).
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What if there are many observed variables?

The curse of dimensionality:

e For FDR, in general M ~ K(K — 1)/a. When K gets large,
huge M may be required (impractical).

e For K > 2, bivariate measures are likely to produce false
couplings (indirect connections).
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Example, TE, K = 20

Trusnetwork Binary network from Threshold (thr=0.04)

Welahtadnetork fiom TE(=26u:=1) Binary network from Density (dens=0.10)

Binary network from Significance (alpha=0.05
iinary network from FDR-Signficance (alpha=0.0!

e sept
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What if there are many observed variables?

The curse of dimensionality:

e For FDR, in general M ~ K(K — 1)/a. When K gets large,
huge M may be required (impractical).

e For K > 2, bivariate measures are likely to produce false
couplings (indirect connections).
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What if there are many observed variables?

The curse of dimensionality:

e For FDR, in general M ~ K(K — 1)/a. When K gets large,
huge M may be required (impractical).

e For K > 2, bivariate measures are likely to produce false
couplings (indirect connections).

e Multivariate measures require long time series, e.g.
PTEx_v|z = I(Vt+1; Xt|y, Zt) requires the estimation of entropy
of [ye+1,Xt, Yy, Z¢] of dimension 1+ Km.
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Example, PTE, K =4

True network Binary network from Threshold (thr=0.01)

Weighted network from PTE(m=2.tau=1)
Binary network from Density (dens=0.30)

Binary network from FDR-Signficance (alpha=0.050 Binary network from Significance, (aipna=0.050)

. o

50 100 150 200 250 300 350 400 450 500
st " 3
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Example, PTE, K =8

True network Binary networtgfrom Thieshold (thr=0.01)

Weighted network fiom PTE(m=2,tau=1)

Binary network from,FDR Signficance (alpha=0.100) Binary network fro Significance (alpha=0.050)

4 2 = A

\ A

- i -
e~

N i

—%
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Interdependence using Dimension Reduction

K time series {x¢, y¢}7_1 and {z:}7 1 ={z1t, 22,6, - - -, ZK—2,¢ 71
driving system: X, response system: Y/,
conditioning on system Z, Z = {Z1,2Zs,...,Zx—2}

If K large with respect to n multivariate Granger causality is
problematic ("the curse of dimensionality”).
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Interdependence using Dimension Reduction

K time series {x¢, y¢}7_1 and {z:}7 1 ={z1t, 22,6, - - -, ZK—2,¢ 71
driving system: X, response system: Y/,
conditioning on system Z, Z = {Z1,2Zs,...,Zx—2}

If K large with respect to n multivariate Granger causality is
problematic ("the curse of dimensionality”).

In CGClI, the VAR model

p p p
Ye=Y aiyei+» bixei+» Az i+eyy
i=1 i=1 i=1

has Kp lagged variables.
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Interdependence using Dimension Reduction

K time series {x¢, y¢}7_1 and {z:}7 1 ={z1t, 22,6, - - -, ZK—2,¢ 71
driving system: X, response system: Y/,
conditioning on system Z, Z = {Z1,2Zs,...,Zx—2}

If K large with respect to n multivariate Granger causality is
problematic ("the curse of dimensionality”).

In CGClI, the VAR model

P P P
Ye = Z ajyt—i + Z bix—j + Z Aize—i+ eyt
i=1 i=1 i=1
has Kp lagged variables.

Statistics methodology: dimension reduction, sparse regression,
restricted regression, and sparse/retricted VAR models.
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PMIME [kugiumtzis, 2013]

Partial Mutual Information from Mixed Embedding (PMIME)
applies dimension reduction using mutual information. The idea
[Vlachos & Kugiumtzis, 2010]:
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PMIME [kugiumtzis, 2013]

Partial Mutual Information from Mixed Embedding (PMIME)
applies dimension reduction using mutual information. The idea
[Vlachos & Kugiumtzis, 2010]:

© Find a subset w, of lagged variables from X, Y and Z that
explains best the future of Y.
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PMIME [kugiumtzis, 2013]

Partial Mutual Information from Mixed Embedding (PMIME)
applies dimension reduction using mutual information. The idea
[Vlachos & Kugiumtzis, 2010]:

© Find a subset w, of lagged variables from X, Y and Z that
explains best the future of Y.

@ Quantify the information on Y ahead that is explained by the
X-components in this subset.
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PMIME [kugiumtzis, 2013]

Partial Mutual Information from Mixed Embedding (PMIME)
applies dimension reduction using mutual information. The idea
[Vlachos & Kugiumtzis, 2010]:

© Find a subset w, of lagged variables from X, Y and Z that
explains best the future of Y.

@ Quantify the information on Y ahead that is explained by the
X-components in this subset.

If there are no components of X in wy, then PMIME = 0.
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PMIME [kugiumtzis, 2013]

Partial Mutual Information from Mixed Embedding (PMIME)
applies dimension reduction using mutual information. The idea
[Vlachos & Kugiumtzis, 2010]:

© Find a subset w, of lagged variables from X, Y and Z that
explains best the future of Y.

@ Quantify the information on Y ahead that is explained by the
X-components in this subset.

If there are no components of X in wy, then PMIME = 0.

Similar approaches based on this idea: [Faes et al, PRE 2011; Stamaglia et
al, PRE 2012; Runge et al, PRL 2012; Wibral et al, PLOSOne 2013; Runge et al, PRE
2015; edited book of Wibral, Vicente and Lizier " Directed information measures in

Neuroscience”, Springer, 2014.]
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PMIME - 2

The mixed embedding scheme

o Start with an empty embedding vector w?, future vector of Y,
Ye+1, and maximum lag L (or Ly for X, L, for Y etc)
Wt = {Xta s Xe—L—1s Yty oo o5 Yi—L—1,21t5 - - - 7ZK—2,t—L—1}
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PMIME - 2

The mixed embedding scheme

o Start with an empty embedding vector w?, future vector of Y,
Ye+1, and maximum lag L (or Ly for X, L, for Y etc)

Wt = {Xta s Xe—L—1s Yty oo o5 Yi—L—1,21t5 - - - 7ZK—2,t—L—1}
o First embedding cycle: w} = argmax,,cyy,/(ye4+1; w), and
w; = (w;)
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PMIME - 2

The mixed embedding scheme

o Start with an empty embedding vector w?, future vector of Y,
Ye+1, and maximum lag L (or Ly for X, L, for Y etc)

Wt = {Xta s Xe—L—1s Yty oo o5 Yi—L—1,21t5 - - - 7ZK—2,t—L—1}
o First embedding cycle: w} = argmax,,cyy,/(ye4+1; w), and
w; = (w;)

o At embedding cycle j suppose wi ! = (wl, w2, ..., wi™}).
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PMIME - 2

The mixed embedding scheme

o Start with an empty embedding vector w?, future vector of Y,
Ye+1, and maximum lag L (or Ly for X, L, for Y etc)

Wt = {Xta s Xe—L—1s Yty oo o5 Yi—L—1,21t5 - - - 7ZK—2,t—L—1}
o First embedding cycle: w} = argmax,,cyy,/(ye4+1; w), and
w; = (w;)

o At embedding cycle j suppose wl ' = (wi, w?, ..., wi ).
Add w] € W, \ w{fl that maximizes mutual information to
y++1 conditioning on the current wffl,
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PMIME - 2

The mixed embedding scheme

o Start with an empty embedding vector w?, future vector of Y,
Ye+1, and maximum lag L (or Ly for X, L, for Y etc)

Wt = {Xta s Xe—L—1s Yty oo o5 Yi—L—1,21t5 - - - 7ZK—2,t—L—1}
o First embedding cycle: w} = argmax,,cyy,/(ye4+1; w), and
w; = (w;)

o At embedding cycle j suppose wl ' = (wi, w?, ..., wi ).
Add w] € W, \ w{fl that maximizes mutual information to
Ye4+1 conditioning on the current wffl,

—1
wl = argmaxwemathbﬂ/vt\wéqI(yH_l; wiw, )
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PMIME - 2

The mixed embedding scheme

o Start with an empty embedding vector w?, future vector of Y,
Ye+1, and maximum lag L (or Ly for X, L, for Y etc)

Wt = {Xta s Xe—L—1s Yty oo o5 Yi—L—1,21t5 - - - 7ZK—2,t—L—1}
o First embedding cycle: w} = argmax,,cyy,/(ye4+1; w), and
w; = (w;)

o At embedding cycle j suppose wl ' = (wi, w?, ..., wi ).
Add w] € W, \ w{fl that maximizes mutual information to
Ye4+1 conditioning on the current wffl,

WI{ - argmaxwemathbfv\/t\wfrlI(yt-‘rl; W‘th_l)
@ Progressive vector building stops at step j (w; = M_l):
Criterion of hard threshold:
/(}’t+1; thil)//()/tJrl; th) > A (here A=0.95)
Criterion of adaptive threshold:
randomization significance test on /(y¢y1; Wﬂwft_l)
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PMIME - 3

The non-uniform mixed embedding vector of lags of all X, Y, Z for
explaining y;i1:
Wi = (Xt—Txla tee 7Xt—TXmX ) yt—TyU cee 7yt—Tymy y Zt—Ty1r 0+ 0 Zt—szZ)

X v4
w w) Wi
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PMIME - 3

The non-uniform mixed embedding vector of lags of all X, Y, Z for
explaining y;i1:
Wi = (Xt—TX17 tee 7Xt—TXmX ) yt—TyU cee 7yt—Tymy y Zt—Ty1r 0+ 0 Zt—szZ)

X v4
w w) Wi

The causality measure PMIME

I(yes1; Wi | W}t/thZ)
I(yes1; We)

Rx_yiz =

® Rx_,y|z: information on the future of Y explained only by
X-components of the embedding vector (given the
components of Y and Z), normalized with the mutual
information of the future of Y and the embedding vector.
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PMIME - 3

The non-uniform mixed embedding vector of lags of all X, Y, Z for
explaining y;i1:
Wi = (Xt—TX17 tee 7Xt—TXmX ) yt—TyU cee 7yt—Tymy y Zt—Ty1r 0+ 0 Zt—szZ)

X v4
w w) Wi

The causality measure PMIME

I(yes1; Wi | W}t/thZ)
I(yes1; We)

Rx_yiz =

® Rx_,y|z: information on the future of Y explained only by
X-components of the embedding vector (given the
components of Y and Z), normalized with the mutual
information of the future of Y and the embedding vector.

o If w; contains no components from X, then Rx_,y|z = 0 and
X has no direct effect on the future of Y.
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PMIME - 4

Three main advantages of PMIME
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PMIME - 4

Three main advantages of PMIME

® Rx_,y|z = 0 when no significant causality is present, and
Rx_;y|z > 0 when it is present
[no significance test, no issues with multiple testing!]
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PMIME - 4

Three main advantages of PMIME

® Rx_,y|z = 0 when no significant causality is present, and
Rx_;y|z > 0 when it is present
[no significance test, no issues with multiple testing!]

@ mixed embedding for all variables is formed as part of the
measure [it does not require the determination of embedding
parameters for each variable]
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PMIME - 4

Three main advantages of PMIME

® Rx_,y|z = 0 when no significant causality is present, and
Rx_;y|z > 0 when it is present
[no significance test, no issues with multiple testing!]

@ mixed embedding for all variables is formed as part of the
measure [it does not require the determination of embedding
parameters for each variable]

@ inclusion of more confounding variables only slows the
computation and has no effect on statistical accuracy
[no “curse of dimensionality” for any dimension of Z,
only slow computation time]
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PMIME - 4

Three main advantages of PMIME

® Rx_,y|z = 0 when no significant causality is present, and
Rx_;y|z > 0 when it is present
[no significance test, no issues with multiple testing!]

@ mixed embedding for all variables is formed as part of the
measure [it does not require the determination of embedding
parameters for each variable]

@ inclusion of more confounding variables only slows the
computation and has no effect on statistical accuracy
[no “curse of dimensionality” for any dimension of Z,
only slow computation time]

= good candidate for causality analysis with many variables
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Example: coupled Mackey-Glass

Coupled identical Mackey-Glass delayed differential equations

K

%i(t) = —0.Lx(t) + ) _ 1 ijf((::g)w
j=1= "

K=5
PN
i - \\
Y A 1
g,
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0.2

Mackey-Glass, C

20




Mackey-Glass, C = 0.2

A =100

T = ‘
w
(\\/L M«( M\ﬂ\{nr/\[ﬁ\




Mackey-Glass: true/estimated network (kugiumtzis & Kimiskidis, 2015]
K=5 True from PMIME (A = 20) from PMIME (A = 100)
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Mackey-Glass: true/estimated network (kugiumtzis & Kimiskidis, 2015]
K=5 True from PMIME (A = 20) from PMIME (A = 100)

K =15 True from PMIME (A = 20) from PMIME (A = 100)
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Can different network structures be detected?

Simulation: three types of networks for the generating system

Random Scale-free
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Can different network structures be detected?

Simulation: three types of networks for the generating system

Random Scale-free
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Generating system:
coupled Mackey-Glass system, K =25, A =100, C =0.2
with coupling structure defined by the network type

Causality measure: PMIME
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Estimation of the Random Network

500 . 1000 1500 2000
time step t
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Estimation of the Small-World Network

500 . 1000 1 5‘00 2000
time step t
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Estimation of the Scale-Free Network
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Time Series and Networks
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Structural Change

Simulation example:

The network structure undergoes structural change at specific time
points:
Random = Small-World = Scale-Free
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Structural Change

Simulation example:
The network structure undergoes structural change at specific time
points:

Random = Small-World = Scale-Free

Estimation of networks with PMIME at sliding windows
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Structural Change

Simulation example:

The network structure undergoes structural change at specific time
points:

Random = Small-World = Scale-Free

Estimation of networks with PMIME at sliding windows

Estimation of network characteristics on the PMIME networks
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Structural Change

Simulation example:

The network structure undergoes structural change at specific time
points:

Random = Small-World = Scale-Free

Estimation of networks with PMIME at sliding windows

Estimation of network characteristics on the PMIME networks

Structural change detection,
[Slow], [Middle], [Fast], [Very fast]
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EEG and Transcranial Magnetic Stimulation (TMS)

Jointly with Vassilis Kimiskidis,
Medical School, AUTh
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TMS-EEG: brain connectivity analysis

How does TMS act on epileptic brain connectivity?
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TMS-EEG: brain connectivity analysis

How does TMS act on epileptic brain connectivity?
{X1, X2, ..., Xk}: K EEG channels, each represents a (sub)system

Practical problems to overcome:
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TMS-EEG: brain connectivity analysis

How does TMS act on epileptic brain connectivity?
{X1, X2, ..., Xk}: K EEG channels, each represents a (sub)system

Practical problems to overcome:

@ Application on small time windows = limited data size
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TMS-EEG: brain connectivity analysis

How does TMS act on epileptic brain connectivity?
{X1, X2, ..., Xk}: K EEG channels, each represents a (sub)system
Practical problems to overcome:

@ Application on small time windows = limited data size

@ scalp EEG = many channels = many variables in Z to
account for
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TMS-EEG: brain connectivity analysis

How does TMS act on epileptic brain connectivity?

{X1, X2, ..., Xk}: K EEG channels, each represents a (sub)system

Practical problems to overcome:

@ Application on small time windows = limited data size
@ scalp EEG = many channels = many variables in Z to
account for

@ Brain system is complex: the connectivity measure has to deal
high dimensionality

with nonlinearity?
sensitivity on free parameters?

Kugiumtzis Dimitris
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TMS-EEG: brain connectivity analysis

How does TMS act on epileptic brain connectivity?

{X1, X2, ..., Xk}: K EEG channels, each represents a (sub)system

Practical problems to overcome:
@ Application on small time windows = limited data size

@ scalp EEG = many channels = many variables in Z to
account for

@ Brain system is complex: the connectivity measure has to deal
high dimensionality

with nonlinearity?
sensitivity on free parameters?

PMIME addresses all these problems!

Kugiumtzis Dimitris
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Example: compare PMIME to other measures on EEG

[Kugiumtzis, PRE, 2013]
One epileptiform discharge (ED) episode terminated by
transcranial magnetic stimulation (TMS), totally 45 channels
@ Select randomly a subset of channels.
@ Compute the connectivity measures on the subset at each
sliding window
e Compute average connectivity strength at each sliding
window.
@ Repeat the steps above a number of times (here 12).
... for subsets of 5, 15, 25, 35 and once for 45 channels.

PMIME PTE (m=5) CGCI (m=5)
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Epileptiform discharges induced by TMS

Preprocessing: [One Episode]
o replacement of TMS artifact, high order FIR
@ rejection of channels with artifacts
o reference to infinity (REST) [ain et al, ClinNeuroph 2010]
@ overlapping windows of 2s, a sliding step of 0.5s
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Epileptiform discharges induced by TMS
[One Episode]

Preprocessing;:

replacement of TMS artifact, high order FIR
rejection of channels with artifacts
reference to infinity (REST) [qin et al, ClinNeuroph 2010]

overlapping windows of 2s, a sliding step of 0.5s
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subject 1 with focal seizure, ED episode ends wit

In-Strength Out-Strength  [kugiumezis & Kimiskidis, 2015]

0 0002 0004 0006 0008 001 0012 0014 0016 0018 002 0002 0004 0006 0008 001 0012 0014 0016 0018 002

In-Out-Strength Average strength / degree

x10” (d)

g 18

average strength
average degree

410
0002 0004 0006 0008 001 0012 0014 0016 0018 002 time [sec]
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0.2

0.15

Subject 1 with focal seizure, 13 episodes, average degree

WA

1135 1140 1145 1150 -5 0 5 10 =15 -10 -5 0 5-15 -10 -5 0 5

time [sec]

Degree EDstart=0

Kugiumtzis Dimitris

Degree EDend=0 Strength EDend=0

Time Series and Networks



Subject 1 with focal seizure, 13 episodes, average degree

WP T
DDA5|1_\ \/\,‘Jm ;v\f\ [a]

1135 1140 1145 1150 -5 0 5 10 =15 -10 -5 0 5-15 -10 -5 0 5
time [sec] Degree EDstart=0 Degree EDend=0 Strength EDend=0

TMS terminates the ED prematurely and restores the network
structure as if it would have terminated spontaneously
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Subject 2 with focal seizure, 9 episodes, average degree

0.25

0.2

0.15 Art
0.1 -Vf’\-u/\/\/\\,f\\/
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800 805 810 815 -5 5 10-10 -5 0 5 -10 -5 0 5
time [sec] Degree EDstart=0 Degree EDend=0 Strength EDend=0

TMS terminates the ED prematurely and restores the network
structure as if it would have terminated spontaneously
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Many network indices (totally 78) computed on the
PMIME-causality networks

Symbol  Description
deg™ degree distribution, m=mean,std.skewness, kurtosis
str™ strength distribution, m=mean,std.skewness kurtosis
TrR;, transitivity ratio, k=binary undirected (bu).binary directed (bd)
weighted directed (wd)
EigC™  eigenvector centrality distribution, m=mean,std

Ae characteristic path length, k=bd.wd
GE: global efficiency, k=bd.wd
g eccentricity distribution, m=mean.std and k=bd.wd

rads radius, k=bhd,wd
dy diameter, k=bd,wd

cr clustering coefficient distribution,m=mean.std and k=bd,wd
& betweenness centrality distribution,m=mean.std and k=bd,wd
e—gp' edge betweenness centrality distribution,m=mean.std and k=bd,wd
EE local efficiency distribution,m=mean.std and k=bd.wd

3motif(f) i™ motif of 3 nodes, i=1.2....13
modul(i)y modularity for i modules, i=2.3.5

Tae(i, ) assortativity coefficient in terms of the degree. i=in,out and j=in, i,j=und
re (I, J)  assortativity coefficient in terms of the strength, i=in,out dI’ldj in,out or :|_und

Prop Rent exponent:topological

Poh Rent exponent: physical

P Rent exponentefficient embedding

SWy small-worldness, k=bd,wd

kes k-core size, k=90-percentile of degree distribution

scs s-core size, k=90-percentile of strength distribution

n Rich club coefficient, k=bd,wd
cycproby  fraction of 3-cycles out of 3-paths
cycprob;  probability: non-cyclic 2-path extend to 3-cycle

iumtzis Dimitris i ies and Networks



Many network indices (totally 78) computed on the
PMIME-causality networks

Symbol  Description
deg™ degree distribution, m=mean,std.skewness, kurtosis
str strength distribution, m=mean,std.skewness kurtosis
TrR;, transitivity ratio, k=binary undirected (bu).binary directed (bd)
weighted directed (wd)
EigC™  eigenvector centrality distribution, m=mean,std
Ae characteristic path length, k=bd.wd
GE: global efficiency, k=bd.wd
g eccentricity distribution, m=mean.std and k=bd.wd
rads radius, k=bhd,wd
d, diameter. k=bd,wd
cr clustering coefficient distribution,m=mean.std and k=bd,wd
& betweenness centrality distribution,m=mean.std and k=bd,wd
e—gy  edge betweenness centrality distribution,m=mean.std and k=bd,wd
LE? local efficiency distribution,m=mean.std and k=bd.wd
3motif(f) i™ motif of 3 nodes, i=1.2....13
modul(f) modularity for i modules, i=2.3.5
Ta(i, ) assortativity coefficient in terms of the degree. i=in.out and j=in.out or i,j=und
re (I, J)  assortativity coefficient in terms of the strength, i=in,out and j=in.out or i,j=und
Prop Rent exponent:topological
Poh Rent exponent: physical
Pee Rent exponentefficient embedding
SWy small-worldness, k=bd,wd
kes k-core size, k=90-percentile of degree distribution
scs s-core size, k=90-percentile of strength distribution
n Rich club coefficient, k=bd,wd
cycproby  fraction of 3-cycles out of 3-paths
cycprob;  probability: non-cyclic 2-path extend to 3-cycle

For both subjects

and pairs

preED - ED
ED - postED

Measure AUROC
degmem 0.9296
dpq 0.9268
3motif(l) 0.9231
Apd 0.9231
STREER 0.9207
3motif(3) 0.9206
3motif(5) 0.9199
LEp" 0.9173
GEywg 0.9163
TrR.4 0.9150
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Many network indices (totally 78) computed on the
PMIME-causality networks

Symbol  Description
deg™ degree distribution, m=mean,std.skewness, kurtosis
str strength distribution, m=mean,std.skewness kurtosis

TrR;, transitivity ratio, k=binary undirected (bu).binary directed (bd) For bOth su bJeCts
weighted directed (wd) d H
EigC™  eigenvector centrality distribution, m=mean,std an pa Irs
Ae characteristic path length, k=bd.wd pre ED - ED
GE: global efficiency, k=bd.wd
g eccentricity distribution, m=mean.std and k=bd.wd ED - post ED
rads radius, k=bhd,wd
d, diameter. k=bd,wd Measure AUROC
cr clustering coefficient distribution,m=mean.std and k=bd,wd
& betweenness centrality distribution,m=mean.std and k=bd,wd d(’g’““" 0.9296
e—gy  edge betweenness centrality distribution,m=mean.std and k=bd,wd dbr.‘ 0.9268
LE? local efficiency distribution,m=mean.std and k=bd.wd A
3merif(i) " motif of 3 nodes, i=12....13 3motif(1) 0.9231
modul(iy  modularity for i modules, i=2.3,5 Apa 0.9231

rag(i, j)  assortativity coefficient in terms of the degree. i=in.out and j=in.out or i,j=und
re (I, J)  assortativity coefficient in terms of the strength, i=in,out and j=in.out or i,j=und

STF 0.9207

Pur  Rentexponenttopological 3motif(3) 0.9206
Poi Rent exponent: physical : 0100
Pee Rent exponentefficient embedding 3"”0”f(5) 0.9199
SWi small-worldness, k=bd.wd LE:,J"{?M 09173
kes k-core size, k=90-percentile of degree distribution GE,q 0.9163
scs s-core size, k=90-percentile of strength distribution 5
& Rich club coefficient, k=bd,wd TrRa 0.9150

cycproby  fraction of 3-cycles out of 3-paths
cycprob;  probability: non-cyclic 2-path extend to 3-cycle

Many networks indices discriminate well preED, ED, postED
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subject 1 with genetic generalized epilepsy (GGE)
ED induced by TMS, [PMIME on 2s windows| [Kugiumtzis et al, 2016]
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subject 1 with genetic generalized epilepsy (GGE)

ED induced by TMS, [PMIME on 2s windows|

One episode
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[Kugiumtzis et al, 2016]




subject 1 with genetic generalized epilepsy (GGE)

ED induced by TMS, [PMIME on 2s windows|

One episode

T
TS e n nn]

[Kugiumtzis et al, 2016]
29 episodes

Average strength
0.45[

Pre ED ED Post ED

Average clustering
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PMIME on 2s window

S1D2RESTPMIME, window[2sec, 0.5sec overlap]: 489/489, time: 246/246sec
causality measure: PMIMEsig, network measure: mean strength
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RGPDC(«) on 1s window

S1D2REST, window[1sec, 0.25sec overlap]: 981/981, time: 246/246sec
causality measure: RGPDCa, network measure: mean strength
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iCo on 1s window

S1D2REST, window[1sec, 0.25sec overlap]: 981/981, time: 246/246sec
causality measure: iCOHa, network measure: mean strength
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Synchronization Likelihood (SL) on 1s window

mean strength mean strength

S1D2REST, window[1sec, 0.25sec overlap]: 981/981, time: 246/246sec
causality measure: SL, network measure: mean strength
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subject 1 with GGE

ED induced by TMS, SL on 1s windows,
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subject 1 with GGE
ED induced by TMS, SL on 1s windows,

One episode
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subject 1 with GG

ED induced by TMS, SL on 1s windows,

One episode

29 episodes Average streng ‘
SL iCOH(«) SL (other parameters)

A ep early middle late PostED
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subject 1 with GG

ED induced by TMS, SL on 1s windows,

One episode

29 episodes Average streng ‘
SL iCOH(a) SL (other parameters)

mean

B?e ED early middle late Post ED P?e ED early middle late PostED




subject 1 with GGE

ED induced by TMS, SL on 1s windows,

One episode

29 episodes Average streng ‘
SL iCOH(a) SL (other parameters)

mean
inout

‘\

Bre ED early middle late Post ED P?e ED early middle late PostED E’?e ED early middle late Post ED
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e “Focus on the reliable estimation of interdependence before you
focus on complex networks”
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e “Focus on the reliable estimation of interdependence before you
focus on complex networks”

e “Bivariate measures are short for forming complex networks”
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e “Focus on the reliable estimation of interdependence before you
focus on complex networks”

e “Bivariate measures are short for forming complex networks”

e “Multivariate measures are hard to estimate”
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e “Focus on the reliable estimation of interdependence before you
focus on complex networks”

e “Bivariate measures are short for forming complex networks”
e “Multivariate measures are hard to estimate”

e PMIME is model-free and almost parameter-free, can estimate
nonlinear direct causal effects in the presence of many variables
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e “Focus on the reliable estimation of interdependence before you
focus on complex networks”

e “Bivariate measures are short for forming complex networks”
e “Multivariate measures are hard to estimate”

e PMIME is model-free and almost parameter-free, can estimate
nonlinear direct causal effects in the presence of many variables

e How can we learn the underlying dynamics of high-dimensional
time series?
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