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Are Yt and Yt−1 correlated?
Are Yt and Yt−2 correlated?
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Are Xt and Xt−1 linearly correlated?

Are Xt and Xt−2 linearly correlated?
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Autocorrelation r(τ) = r(Xt ;Xt−τ )

Are Xt and Xt−1 linearly correlated? r(1) = r(Xt ;Xt−1) 6= 0? Yes

Are Xt and Xt−2 linearly correlated? r(2) = r(Xt ;Xt−2) 6= 0? Yes

r(τ) = r(Xt ;Xt−τ ) = 1
n−τ

∑n
t=τ+1(xt − x̄)(xt−τ − x̄)/s2X
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Are Xt and Xt−2 directly linearly correlated?
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Partial autocorrelation φτ,τ = r(Xt ;Xt−τ |Xt−1, . . . ,Xt−τ+1)

Are Xt and Xt−2 directly linearly correlated?

Are Xt and Xt−2 linearly correlated given Xt−1?

r(Xt ;Xt−2|Xt−1) 6= 0? No
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Are Xt and Xt−1 linearly and nonlinearly correlated?

Are Xt and Xt−2 linearly and nonlinearly correlated?
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Mutual information I (τ) = I (Xt ;Xt−τ )

Are Xt and Xt−1 linearly and nonlinearly correlated? I (Xt ;Xt−1) 6= 0? Yes

Are Xt and Xt−2 linearly and nonlinearly correlated? I (Xt ;Xt−2) 6= 0? Yes

I (τ) = I (Xt ,Xt−τ ) = H(Xt) + H(Xt−τ )− H(Xt ,Xt−τ )

=
∑

xt ,xt−τ
pXtXt−τ (xt , xt−τ ) log

pXtXt−τ
(xt ,xt−τ )

pXt (xt)pXt−τ
(xt−τ )

H(X ) = −
∑

x p(x) log p(x)
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Are Xt and Xt−2 directly linearly and nonlinearly correlated?
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Conditional mutual information Ic(τ) = I (Xt ;Xt−τ |Xt−1, . . . ,Xt−τ+1)

Are Xt and Xt−2 directly linearly and nonlinearly correlated?

Are Xt and Xt−2 linearly and nonlinearly correlated given Xt−1?

I (Xt ;Xt−2|Xt−1) 6= 0? No
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Are Xt and Xt−2 directly linearly correlated?

r(Xt ;Xt−2|Xt−1) 6= 0? No

Are Xt and Xt−2 directly linearly or/and nonlinearly correlated?

I (Xt ;Xt−2|Xt−1) 6= 0? No
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Are Xt and Yt+1 correlated?
Are Xt−3 and Yt+1 correlated?
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Are Xt−3 and Yt+1 correlated?
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Are Xt and Yt+1 linearly correlated?

Are Xt−3 and Yt+1 linearly correlated?
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Cross-correlation rXY (τ) = r(Xt ;Yt+τ )

Are Xt and Yt+1 linearly correlated? r(1) = r(Xt ;Yt+1) 6= 0? Yes

Are Xt−3 and Yt+1 linearly correlated? r(4) = r(Xt ;Yt+4) 6= 0? Yes

rXY (τ) = r(Xt ;Yt+τ ) = 1
n−τ

∑n−τ
t=1 (xt − x̄)(yt+τ − ȳ)/(sX sY )
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Cross-mutual information IXY (τ) = I (Xt ;Yt+τ )

Are Xt and Yt+1 linearly and nonlinearly correlated? Yes

Are Xt−3 and Yt+1 linearly and nonlinearly correlated? Yes

IXY (τ) = I (Xt ,Yt+τ ) = H(Xt) + H(Yt+τ )− H(Xt ,Yt+τ )

=
∑

xt ,yt+τ
pXtYt+τ (xt , yt+τ ) log

pXtYt+τ (xt ,yt+τ )

pXt (xt)pYt+τ (yt+τ )
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Are Xt and Yt+1 directly correlated?

Are Xt−3 and Yt+1 directly correlated?
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Are Xt and Yt+1 directly correlated?

Are Xt−3 and Yt+1 directly correlated?

Partial Cross-correlation rXY |Z (0) = r(Xt ;Yt |Zt)
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Are Xt and Yt+1 directly correlated?

Are Xt−3 and Yt+1 directly correlated?

Partial Cross-correlation rXY |Z (0) = r(Xt ;Yt |Zt) lags?

Kugiumtzis Dimitris Time Series and Networks



Are Xt and Yt+1 directly correlated?

Are Xt−3 and Yt+1 directly correlated?
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correlation
?

r(Xt ;Yt)
Xt Yt
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-
�
causality

?

r(Xt ;Yt+1) or better r(Xt ;Yt+1|Yt)
Xt Yt
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-
direct
causality

?

? �
�
�
�
�
��

indirect
causality

?

r(Xt ;Yt+1|Yt ,Zt)
Xt Yt

Zt
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rXY (0) 6= 0 or IXY (0) 6= 0: =⇒ correlation of xt and yt

=⇒ systems X and Y are correlated, X ∼ Y

rXY (τ) 6= 0 or IXY (τ) 6= 0: =⇒ correlation of xt and yt+τ

=⇒ X effects the future of Y , X → Y

rXY (−τ) 6= 0 or IXY (−τ) 6= 0: =⇒ Y → X

Thus rXY (τ) and IXY (τ) indicate the direction of interaction.

Can they also be used as causality measures?
Not the most appropriate, but they have been used in many studies
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Example: Returns for USA, UnitedKingdom, Greece and Australia.

returns:
xt = log(yt)− log(yt−1)

X :AUS, Y :GRE

rXY (0) = 0.58

�rXY (−1) = 0.19

-rXY (1) = 0.02

Is the measure significant?
Can I draw a link? (directed/non-directed)
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Significance randomization test for a correlation / causality measure q,
H0 : q = 0 H1 : q 6= 0

1 Generate M resampled (surrogate) time series, each by shifting the
original observations with a random time step w :

original time series: {xt} = {x1, x2, . . . , xn}
i-th surrogate time series:
{x∗it } = {xw+1, xw+2, . . . , xn, x1, . . . , xw−1, xw}

2 Compute the statistic q on the original pair, q0, and on the M
surrogate pairs, q1, . . . , qM ,

e.g. q0 ≡ rXY (τ) = Corr(xt , yt+τ ) and qi ≡ Corr(x∗it , y
∗i
t+τ )

3 If q0 is at the tails of the empirical null distribution formed by
q1, . . . , qM , reject H0.

Using rank ordering: for a two-sided test, the p-value of the test is
2

rq0−0.326

M+1+0.348 if rq0 <
M+1
2

2(1− rq0−0.326

M+1+0.348 ) if rq0 ≥ M+1
2
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Example: Returns for USA, UnitedKingdom, Greece and Australia.
Correlation matrix for delay 1, rXY (1)

R(1) =


0.382 0.333 0.596

0.049 0.039 0.303
0.096 0.001 0.190
0.031 −0.001 −0.021


Randomization significance test for rXY (1) (M = 1000)

Matrix of p-values

P(R(1)) =


0.0013 0.0013 0.0033

0.0732 0.1991 0.0013
0.0073 0.8901 0.0033
0.2450 0.9760 0.4028


Adjacency matrix

A =


1 1 1

0 0 1
1 0 1
0 0 0


For significance level, say α = 0.05, there may be p < α more
often than it should be due to multiple testing.
Correction with e.g. False Discovery Rate (FDR)
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Linear causality measures (direct and indirect)

Idea of Granger causality X → Y [Granger 1969]:
predict Y better when including X in the regression model.

Granger Causality Index (GCI) [Brandt & Williams 2007]

Bivariate time series {xt , yt}nt=1

driving system: X , response system: Y

Model 1 (restricted, R, X absent in the model):

yt =

p∑
i=1

aiyt−i + eR,t

Model 2 (unrestricted, U, X present in the model):

yt =

p∑
i=1

aiyt−i +

p∑
i=1

bixt−i + eU,t

GCIX→Y = ln
Var(êR,t)

Var(êU,t)
GCIX→Y > 0⇒ X → Y holds
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Parametric significance test for GCI

GCIX→Y > 0 ? ⇒ Significance test

If X does not Granger causes Y then the contribution of X -lags in
the unrestricted model should be insignificant ⇒

the terms of X should be insignificant

H0: bi = 0, for all i = 1, . . . , p
H1: bi 6= 0, for any of i = 1, . . . , p

Snedecor-Fisher test (F-test):

F =
(SSER − SSEU)/p

SSEU/ndf

SSE: sum of squared errors
ndf: number of degrees of freedoms, ndf = (n − p)− 2p,
n − p: number of equations,
2p: number of coefficients in the U-model.
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Linear causality measures (direct)

Conditional Granger Causality Index (CGCI)

K time series {xt , yt}nt=1 and {zt}nt=1 = {z1,t , z2,t , . . . , zK−2,t}nt=1

driving system: X , response system: Y ,
conditioning on system Z , Z = {Z1,Z2, . . . ,ZK−2}

Model 1 (restricted, R, X absent in the model):

yt =

p∑
i=1

aiyt−i +

p∑
i=1

Aizt−i + eR,t

Model 2 (unrestricted, U, X present in the model):

yt =

p∑
i=1

aiyt−i +

p∑
i=1

bixt−i +

p∑
i=1

Aizt−i + eU,t

CGCIX→Y |Z = ln
Var(êR,t)

Var(êU,t)
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Parametric significance test for CGCI

CGCIX→Y |Z > 0 ? ⇒ Significance test as for GCI

H0: bi = 0, for all i = 1, . . . , p
H1: bi 6= 0, for any of i = 1, . . . , p

F =
(SSER − SSEU)/p

SSEU/ndf

ndf = (n − p)− Kp,
n − p: number of equations,
Kp: number of coefficients in the U-model.
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Model order and embedding parameters

VAR model for Y

yt =

p∑
i=1

aiyt−i +

p∑
i=1

bixt−i + eU,t

yt+1 =

p∑
i=1

aiyt−i+1 +

p∑
i=1

bixt−i+1 + eU,t+1

yt+1 is given in terms of yt = [yt , yt−1, . . . , yt−p+1] and
xt = [xt , xt−1, . . . , xt−p+1], yt+1 = F(yt , xt)

Let the lag step be τ ≥ 1 ⇒ yt = [yt , yt−τ , . . . , yt−(p−1)τ ]:

τ , p: embedding parameters (generally different for X and Y )

State space reconstruction:
xt = [xt , xt−τx , . . . , xt−(mx−1)τx ]′, embedding parameters: mx ,τx
yt = [yt , yt−τy , . . . , yt−(my−1)τy ]′, embedding parameters: my ,τy

yt+1: future state of Y
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Nonlinear causality measures (direct and indirect)

Transfer Entropy (TE) [Schreiber, 2000]

Measure the effect of X on Y at one time step ahead, accounting
(conditioning) for the effect from its own current state

TEX→Y = I (yt+1; xt |yt)
= H(xt , yt)− H(yt+1, xt , yt) + H(yt+1, yt)− H(yt)

=
∑

p(yt+1, xt , yt) log
p(yt+1|xt , yt)
p(yt+1|yt)

Joint entropies (and distributions) can have high dimension!

Entropy estimates from nearest neighbors [Kraskov et al, 2004]

TE is equivalent to GCI when the stochastic process of (X ,Y ) is
Gaussian [Barnett et al, PRE 2009]
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Nonlinear causality measures (direct)

driving system: X , response system: Y ,
conditioning on system Z , Z = {Z1,Z2, . . . ,ZK−2}
join all K − 2 z-reconstructed vectors: Zt = [z1,t , . . . , zK−2,t ]

Partial Transfer Entropy (PTE) [Vakorin et al, 2009; Papana et al, 2012]

Measure the effect of X on Y at T times ahead, accounting
(conditioning) for the effect from its own current state and the
current state of the other variables except X .

PTEX→Y |Z = I (yt+1; xt |yt ,Zt)

= H(xt , yt |Zt)− H(yt+1, xt , yt |Zt) + H(yt+1, yt |Zt)− H(yt |Zt)

Joint entropies (and distributions) can have very high dimension!
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Example: Nonlinear stochastic process

Nonlinear stochastic map:

x1,t = 3.4x1,t−1(1− x21,t−1)e−x2
1,t−1 + 0.4e1,t

x2,t = 3.4x2,t−1(1− x22,t−1)e−x2
2,t−1 + 0.5x1,t−1x2,t−1 + 0.4e2,t

x3,t = 3.4x3,t−1(1− x23,t−1)e−x2
3,t−1 + 0.3x2,t−1 + 0.5x21,t−1 + 0.4e3,t

[Model 7, Gourevich et al, 2006]

True connectivity network

Estimation of the correct causality effects from the time series?
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1 Dependence measures in univariate time series

2 Interdependence in multivariate time series

3 Complex networks from multivariate time series

4 High-dimensional time series: Implications and solutions
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Example: Games of world cup 1930 - 2006

Kugiumtzis Dimitris Time Series and Networks



Example: Flight connections

Source: https://au.pinterest.com/pin/488077678338752549/
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Example: Greek domestic flight connections
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Example: Bullying causal effects

Source: https://doi.org/10.1093/schbul/sbx013
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Example: Global financial market

Data source: https://www.msci.com/market-cap-weighted-indexes Network ?
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Example: Brain dynamical system

Data source: https://physionet.org/pn6/chbmit/chb08/ Network ?
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How to assess the presence of a connection?

Three possible ways to convert a network of weighted connections
(the Granger causality measure) to a network of binary
connections:

1 Threshold on the measure magnitude, q(i → j) > thr.
2 Threshold on the network density, only the d% largest

q(i → j).
3 Significance test on each q(i → j). Threshold, e.g. α = 0.05

on the p-value of the test.
Parametric or resampling test (resampling test for a nonlinear
causality measure).
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The problem of multiple testing

Significance resampling test on q(i → j) for each pair (Xi ,Xj).

K (K − 1) significance tests =⇒ Correction for multiple testing

Popular choice:

False Discovery Rate (FDR) [Benjamini & Hochberg, 1995]

K (K − 1) p-values in ascending order: p(1), p(2), . . . , p(K(K−1))

Rejection for the k tests with p ≤ p(k), where p(k) is the
largest p-value for which p(k) < kα/(K (K − 1)).

Small p-value can only be obtained with large number of surrogates

When K gets large, FDR requires huge M (impractical).
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Example: coupled Henon maps

x1,t+1 = 1.4− x21,t + 0.3x1,t−1

xi,t+1 = 1.4− (0.5C (xi−1,t + xi+1,t) + (1− C )xi,t)
2 + 0.3xi,t−1

xK ,t+1 = 1.4− x2K ,t + 0.3xK ,t−1

C : coupling strength [Politi & Torcini, 1992]

Network structure
for K = 5
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Example, TE, K = 5
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1 Dependence measures in univariate time series

2 Interdependence in multivariate time series

3 Complex networks from multivariate time series

4 High-dimensional time series: Implications and solutions
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Example, TE, K = 10
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What if there are many observed variables?

The curse of dimensionality:

• For FDR, in general M ∼ K (K − 1)/α. When K gets large,
huge M may be required (impractical).

• For K > 2, bivariate measures are likely to produce false
couplings (indirect connections).
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Example, TE, K = 20
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What if there are many observed variables?

The curse of dimensionality:

• For FDR, in general M ∼ K (K − 1)/α. When K gets large,
huge M may be required (impractical).

• For K > 2, bivariate measures are likely to produce false
couplings (indirect connections).

• Multivariate measures require long time series, e.g.
PTEX→Y |Z = I (yt+1; xt |yt ,Zt) requires the estimation of entropy
of [yt+1, xt , yt ,Zt ]

′ of dimension 1 + Km.
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Example, PTE, K = 4
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Example, PTE, K = 8
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Interdependence using Dimension Reduction

K time series {xt , yt}nt=1 and {zt}nt=1 = {z1,t , z2,t , . . . , zK−2,t}nt=1

driving system: X , response system: Y ,
conditioning on system Z , Z = {Z1,Z2, . . . ,ZK−2}

If K large with respect to n multivariate Granger causality is
problematic (”the curse of dimensionality”).

In CGCI, the VAR model

yt =

p∑
i=1

aiyt−i +

p∑
i=1

bixt−i +

p∑
i=1

Aizt−i + eU,t

has Kp lagged variables.

Statistics methodology: dimension reduction, sparse regression,
restricted regression, and sparse/retricted VAR models.
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PMIME [Kugiumtzis, 2013]

Partial Mutual Information from Mixed Embedding (PMIME)
applies dimension reduction using mutual information. The idea
[Vlachos & Kugiumtzis, 2010]:

1 Find a subset wy of lagged variables from X , Y and Z that
explains best the future of Y .

2 Quantify the information on Y ahead that is explained by the
X -components in this subset.

If there are no components of X in wy , then PMIME = 0.

Similar approaches based on this idea: [Faes et al, PRE 2011; Stamaglia et

al, PRE 2012; Runge et al, PRL 2012; Wibral et al, PLOSOne 2013; Runge et al, PRE

2015; edited book of Wibral, Vicente and Lizier ”Directed information measures in

Neuroscience”, Springer, 2014.]
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PMIME - 2

The mixed embedding scheme

Start with an empty embedding vector w0
t , future vector of Y ,

yt+1, and maximum lag L (or Lx for X , Ly for Y etc)
Wt = {xt , . . . , xt−L−1, yt , . . . , yt−L−1, z1,t , . . . , zK−2,t−L−1}

First embedding cycle: w1
t = argmaxw∈Wt

I (yt+1;w), and
w1

t = (w1
t )

At embedding cycle j suppose wj−1
t = (w1

t ,w
2
t , . . . ,w

j−1
t ).

Add w j
t ∈Wt \wj−1

t that maximizes mutual information to
yt+1 conditioning on the current wj−1

t ,
w j
t = argmax

w∈mathbfWt\wj−1
t

I (yt+1;w |wj−1
t )

Progressive vector building stops at step j (wt = wj−1
t ):

Criterion of hard threshold:
I
(
yt+1; wj−1

t

)
/I
(
yt+1; wj

t

)
> A (here A = 0.95)

Criterion of adaptive threshold:
randomization significance test on I (yt+1;w j

t |w
j−1
t )
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PMIME - 3

The non-uniform mixed embedding vector of lags of all X ,Y ,Z for
explaining yt+1:

wt = (xt−τx1 , . . . , xt−τxmx︸ ︷︷ ︸
wx
t

, yt−τy1 , . . . , yt−τymy︸ ︷︷ ︸
wy
t

, zt−τz1 , . . . , zt−τzmz︸ ︷︷ ︸
wz
t

)

The causality measure PMIME

RX→Y |Z =
I (yt+1; wx

t | w
y
t ,w

Z
t )

I (yt+1; wt)

RX→Y |Z : information on the future of Y explained only by
X -components of the embedding vector (given the
components of Y and Z ), normalized with the mutual
information of the future of Y and the embedding vector.

If wt contains no components from X , then RX→Y |Z = 0 and
X has no direct effect on the future of Y .
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wx
t

, yt−τy1 , . . . , yt−τymy︸ ︷︷ ︸
wy
t

, zt−τz1 , . . . , zt−τzmz︸ ︷︷ ︸
wz
t

)

The causality measure PMIME

RX→Y |Z =
I (yt+1; wx

t | w
y
t ,w

Z
t )

I (yt+1; wt)

RX→Y |Z : information on the future of Y explained only by
X -components of the embedding vector (given the
components of Y and Z ), normalized with the mutual
information of the future of Y and the embedding vector.

If wt contains no components from X , then RX→Y |Z = 0 and
X has no direct effect on the future of Y .
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PMIME - 4

Three main advantages of PMIME

RX→Y |Z = 0 when no significant causality is present, and
RX→Y |Z > 0 when it is present
[no significance test, no issues with multiple testing!]

mixed embedding for all variables is formed as part of the
measure [it does not require the determination of embedding
parameters for each variable]

inclusion of more confounding variables only slows the
computation and has no effect on statistical accuracy
[no “curse of dimensionality” for any dimension of Z ,
only slow computation time]

⇒ good candidate for causality analysis with many variables
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Example: coupled Mackey-Glass

Coupled identical Mackey-Glass delayed differential equations

ẋi (t) = −0.1xi (t) +
K∑
j=1

Cijxj(t −∆)

1 + xj(t −∆)10
for i = 1, . . . ,K

K = 5
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Mackey-Glass, C = 0.2

∆ = 20

∆ = 100
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Mackey-Glass, C = 0.2

∆ = 20 ∆ = 100
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Mackey-Glass: true/estimated network [Kugiumtzis & Kimiskidis, 2015]
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Mackey-Glass: true/estimated network [Kugiumtzis & Kimiskidis, 2015]
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Can different network structures be detected?

Simulation: three types of networks for the generating system

Generating system:
coupled Mackey-Glass system, K = 25, ∆ = 100, C = 0.2
with coupling structure defined by the network type

Causality measure: PMIME
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Estimation of the Random Network
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Estimation of the Small-World Network
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Estimation of the Scale-Free Network
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Structural Change

Simulation example:

The network structure undergoes structural change at specific time
points:
Random ⇒ Small-World ⇒ Scale-Free

Estimation of networks with PMIME at sliding windows

Estimation of network characteristics on the PMIME networks

Structural change detection,
[Slow], [Middle], [Fast], [Very fast]
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EEG and Transcranial Magnetic Stimulation (TMS)

Jointly with Vassilis Kimiskidis,
Medical School, AUTh
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TMS-EEG: brain connectivity analysis

How does TMS act on epileptic brain connectivity?

{X1,X2, . . . ,XK}: K EEG channels, each represents a (sub)system

Practical problems to overcome:

Application on small time windows ⇒ limited data size

scalp EEG ⇒ many channels ⇒ many variables in Z to
account for

Brain system is complex: the connectivity measure has to deal

with


high dimensionality
nonlinearity?
sensitivity on free parameters?

PMIME addresses all these problems!
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Example: compare PMIME to other measures on EEG
[Kugiumtzis, PRE, 2013]

One epileptiform discharge (ED) episode terminated by
transcranial magnetic stimulation (TMS), totally 45 channels

Select randomly a subset of channels.

Compute the connectivity measures on the subset at each
sliding window

Compute average connectivity strength at each sliding
window.

Repeat the steps above a number of times (here 12).

... for subsets of 5, 15, 25, 35 and once for 45 channels.
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Epileptiform discharges induced by TMS
Preprocessing: [One Episode]

replacement of TMS artifact, high order FIR

rejection of channels with artifacts

reference to infinity (REST) [Qin et al, ClinNeuroph 2010]

overlapping windows of 2s, a sliding step of 0.5s
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subject 1 with focal seizure, ED episode ends with TMS

In-Strength Out-Strength [Kugiumtzis & Kimiskidis, 2015]

In-Out-Strength Average strength / degree
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Subject 1 with focal seizure, 13 episodes, average degree

TMS terminates the ED prematurely and restores the network
structure as if it would have terminated spontaneously
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Subject 1 with focal seizure, 13 episodes, average degree

TMS terminates the ED prematurely and restores the network
structure as if it would have terminated spontaneously
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Subject 2 with focal seizure, 9 episodes, average degree

TMS terminates the ED prematurely and restores the network
structure as if it would have terminated spontaneously
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Many network indices (totally 78) computed on the
PMIME-causality networks

For both subjects
and pairs
preED - ED
ED - postED

Many networks indices discriminate well preED, ED, postED
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subject 1 with genetic generalized epilepsy (GGE)
ED induced by TMS, [PMIME on 2s windows] [Kugiumtzis et al, 2016]

One episode 29 episodes

Average strength

Average clustering

coefficient
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PMIME on 2s window
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RGPDC(α) on 1s window

Kugiumtzis Dimitris Time Series and Networks



iCoh(α) on 1s window
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Synchronization Likelihood (SL) on 1s window
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subject 1 with GGE
ED induced by TMS, SL on 1s windows,

One episode

29 episodes Average strength

SL iCOH(α) SL (other parameters)
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Summary

• “Focus on the reliable estimation of interdependence before you
focus on complex networks”

• “Bivariate measures are short for forming complex networks”

• “Multivariate measures are hard to estimate”

• PMIME is model-free and almost parameter-free, can estimate
nonlinear direct causal effects in the presence of many variables

• How can we learn the underlying dynamics of high-dimensional
time series?
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