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Introduction



Introduction

A brief introduction on pattern formation in continuous media and the networks.



The pioneer Alan Turing

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. University of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical sub: called morph: , reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Such a system, although it may lly be quite h may later develop a pattern
or structure due to an instability of the homogeneous equilibrium, which is triggered off by
random disturbances. Such reaction-diffusion systems are considered in some detail in the case
of an isolated ring of cells, a b icall , though biologically unusual system.
The investigation is chiefly concerned with the onset of instability. It is found that there are six
essentially different forms which this may take. In the most interesting form stationary waves
appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns
on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con-
sidered. Such a system appears to account for gastrulation. Another reaction system in two
dimensions gives rise to patterns ini of dappli It is also d that i y
waves in two dimensions could account for the phenomena of phyllotaxis.

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote
may determine the anatomical structure of the resulting organism. The theory does not make any
new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account
for many of the facts. The full understanding of the paper requires a good knowledge of mathe-
matics, some biology, and some elementary chemistry. Since readers cannot be expected to be
experts in all of these subjects, a number of elementary facts are explained, which can be found in
text-books, but whose omission would make the paper difficult reading.

flu,v) + 0uV3u,
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Self-organization far from equilibrium

Reaction-diffusion systems support a wealth of self-organization phenomena

Turing patterns
Spiral waves

Nakamasu, Takahashi, Kanbe, Kondoab,PNAS 106 (2009) Bar, Gottschalk, Eiswirth, Ertl, J. Chem. Phys. (1993)

Synchronization Propagating fronts

Osipov, Kurths, Zhou, Synchronization in Oscillatory Networks, Wikipedia
Berlin 2007



Collective dynamics in complex networks

The nodes and the links of such networks may represent:

e Individual habitats and dispersal connections between them

e Electro-chemical units which are connected with resistors

e Neural cells and the synapses connecting them

e Individuals which interact via their social networks

Synchronization of
coupled oscillators in

networks:

h &0

Arenas et al, Synchronization in
complex networks, Phys Rep

(2008)

Chimera states in

non-local rings of

coupled oscillators:

Kouvaris, Hizanidis et al, Chaos
(2016)

Turing patterns in
network-organized

activator-inhibitor
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Nakao, Mikhailov, Nat Phys

(2010)

Epidemic spreading in
networks:

(SIR: susceptible, infected,
removed; SIS...)

Node i

@ Patcier
@ raricees.

Colizza, Pastor-Satorras,

Vespignani, Nat Phys (2007)



Dynamics on networks

In order to study dynamics on networks we need

e A dynamical system (usually non-linear)
e Monostable
e Bistable
e Oscillator
e Ising model, Diffusion, Maps,...
e A network (usually complex)

e Simplex
e Multiplex/Multilayer

e Modular

e Colored

o Metabolic networks, Facebook, Twitter, Mobility networks, The Brain, ...

N
W =F(u) + 0y H(uy)
j=1

One can also study agent-based models in networks (Monte Carlo methods, etc...)



Complex networks

Scale-f 2. Erdos-Rényi 3. k-ary trees
1. Scale-free Poisson degree distribution
Power-law degree distribution ( N>k€—pN Each node has no ore than k — 1
P(k) ~ S
P(k) ~ k~ 7 typically 2 < v < 3 : “children”
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In Erdds-Rényi networks, the clustering coefficient (%W) is 0= f

N
N — oo, then C' — 0, as required by the tree structure

Dorogovtsev, Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford 2003



Reaction-diffusion systems on networks

One-component reaction-diffusion systems:
N
U; = f(ul) + D Z(Tijuj' - le’ul)
j=1

e function f(u;) describes the local dynamics in the node 7
e T is the adjacency matrix whose elements take the values T;; = 1 if the nodes 4
and j are connected and T;; = O otherwise.

In undirected networks the adjacency matrix is summetric 75; = T};
In weighted networks Tj; can take values different than 0 and 1.

The RD system can also be written as
N
U; = f(’ul) + D ZLijuj

j=1

e L is the Laplacian matrix whose elements are given by L;; = T;; — k;0;;
e k; is the number of connections (degree) of a node i k; = SN | Tj;

j=1
e D is the rate of diffusive transport of u across the links.

For the 1D chains this equation reads as

;= f(ug) + D(ui—1 — 2u; + uiy1)



Bistable networks



Bistable networks

We discuss the formation mechanism of localized patterns in networks of coupled
bistable elements.



The Schlogl bistable model in networks

Friedrich Schldgl (1917-2011) had proposed a hypothetical
trimolecular chemical reaction with an autocatalytic state

given by the stochiometric scheme:

c1
A+2U0 3U B B«
ca

U B
ca

If the concentrations of the species A, B are constant, by
influx of A into the system and outflux of B out of the
system, the system is maintained in a nonequilibrium state.

The evolution of the species U concentration in this

nonequilibrium state is given by, We address the questions:

e How the topology of the network
shapes the hosted dynamics?

a(t) = f(u) = —(u—r1)(u—r2)(u—r3)

e Can we control the dynamics and

design new patterns?
F. Schisgl, Z. Physik 253, 147 (1972)



Bistable dynamics / Bistable media

Local dynamics: %u(t) =f(u)=—(u—r1)(u—r2)(u—r3)
Chemical potential: V(u) = —/f(u)du

7]
Bistable medium: au(x,t) = f(u) + DV2u(x,t)

/\ .




Regular trees with fixed branching factor

All nodes lying in the same distance from the root can be grouped into a single shell:

A node at the shell [ should be diffusively coupled to K — 1 nodes in the next shell [ + 1 and to
just one node in the previous shell [ — 1.

The evolution of the activation level u; is then described by:

= f(uy) + D(up—1 —up) + D(k = 1) (w1 —w)



Discrete 1D chains

Ay = f(ur) + D [ug—1 — 2up + up1]

Mitkov, Kladko, Pearson, PRL 81 (1998)

A stationary front (pinned) solution is found for
u; = 0.

Q(um) = Um = f(u'rn) + D("'3 — 2um + Tl)

Um—1 RT3 and Upy 1 R T
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Regular trees

U = f(w) + D [u—1 — kug + (k — 1)ugq4]

k is the nodes degree and thus takes only integer values. However, in our theoretical
approximation k is treated as a continuous parameter.

actual pinned front from the simulations

30)eeececcces .
\Q g(um) = Um — f(um,) + D [7"3 — kum + (k - 1)7‘1}
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In the same manner we assume that

Um—1 RT3 and Upy+1 T

Kouvaris, Kori, Mikhailov PLoS ONE (2012)



Bifurcation diagram
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Kouvaris, Kori, Mikhailov PLoS QRIE (2012)
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Electrochemical experiments

20 Electrode Chain
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Kouvaris, Sebek, Mikhailov, Kiss, Angewandte Chemie 128 (2016)



Experimental observation of patterns in bistable trees

Center activation Periphery activation

b e

K=0.1 mS

0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
Current (mA) Current (mA)

Kouvaris, Sebek, Mikhailov, Kiss, Angewandte Chemie 128 (2016)



Experimental observation of patterns in bistable trees
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Kouvaris, Sebek, Mikhailov, Kiss, Angewandte Chemie 128 (2016)



Control of bistable networks



Control of bistable networks

We discuss control schemes and the purposeful design of stationary and oscillatory
patterns in networks of bistable nodes.



Control of pattern formation in bistable trees

Let us now consider the local
bistable dynamics

flu,h) =u(h —u)(u—1),

where h specifies the activation
threshold.

Global negative feedback

®
o
(e}

o

The parameter

€
h = ho + u(S(t) — So),
depends on the total activation ‘
. g . o

N
S(t) = uy(t), o

ji=1

-
©
o
o
o

O:‘

and increases when more nodes
are activated, so that a negative 0 200 400
feedback is realized. shell index 1

ol il

Krisher, Mikhailov, PRL (1994) Kouvaris, Mikhailov EPL (2013)



Global control in random networks

Kouvaris, Mikhailov EPL (2013)

20



Global control in random networks

The size S of a stationary pattern grows
like,
S =c(h),

where ¢(h) is the propagation velocity of a
front. When a stationary pattern is
established, its size should not change with
time and thus S = 0, namely

ch) = 0

clho+pu(S—=5So)] = 0

Let us assume here that the velocity is
dependent on k as ¢(h) = D(co — Vkh).
Then the intensity of the feedback can be
given by

co — Vkho
VE(S — Sp)

where we see that p1 o< 1/(S — Sp) . Then
by taking into account that (u) o< (S —Sp)
we conclude on the relation

(u) o< p~1

21



Local control in random networks

hi = ho + pH(k;)(S — So) where H(k;) is the step function.

1.0y
08 .000“1
__06
H(k;) =1if k < ko and :
H(k;) =0if k > ko 0'2
0.0 2\':’4,» SR
k
or
1.0y
[ ]
0.8p,
H(k;) =1if k> ko and E
H(k;) = 0if k < ko -
0.2
0.0 OO0

246 8101214
k

Kouvaris, Mikhailov EPL (2013)
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Excitable networks




Excitable networks
Propagation failure

Kinematical theory

Networks of coupled excitable nodes (e.g. neurons) give rise to a rich spationtemporal
behaviour. Here we study propagation failure of excitations as a result of the nodes
connectivity degree.

23



Fitzhugh-Nagumo dynamics on

Let us now assume the local
excitable dynamics given by:

ud

flu,v) = u— o v ..oo

glu,v) = u-p
and the network-organized 0.0
activator-inhibitor system: a0

2 4 6 8

, al shell index r
@ = f(ui,vi)+ DY Lijuj,
0 = eg(ui,vi). v

On a regular tree this system

reads, 2
-2 0 2 0 100 200 300 400
u time ¢
Up = f(ur, 'Ur) + D[“T*l — ku, + (k - I)UT+1] 5
or = eg(ur,vr).

Kouvaris, Isele, Mikhailov, Schall EPL (2014)
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Propagation failure of excitation waves

150

. k=3 k=4 k=5 k=6 =7 B2
]
E 100 o
jz 50
0 2
0123456
time [arbitrary units]
£=0.02 D=004, B=—1.1 movie (k= 6)
0.16 ‘ ‘
0.16 1 e -o —0.02
0.12} o-s c=003|]
0.12¢ b e -0 =004
] 1
0.08} R c008 \7
o -e =2 : : | 'l 1
0.04f| - k=3[ 0.4 1 \
oo k=4l | | |
0960 0.02 0.01 006 0.005 1 6 3
€

Kouvaris, Isele, Mikhailov, Scholl EPL (2014)
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Saddle-node bifurcations

An excitation wave on this ring of N shells is a periodic orbit of 2N ODEs, of the
system and thus can easily be continued, using AUTO-07p.
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Kouvaris, Isele, Mikhailov, Scholl EPL (2014)
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Kinematical theory of excitation waves in the trees

Up = f(ur,vy) + Dlur_1 — kuyp + (E — D)upga],

we substitute u,—1 and w,41 with
their Taylor expansions:

1
Up—1 R quVqugAu

1
Uppl R u7\+Vu+§Au.

The continuous system then reads,

u(x) =

o(x) = eg(u,v).

By introducing the moving reference
frame
E=r—ct

where the profile of the wave is
stationary we can write,

Dk
flu,v) + TAU + D(k —

U = eg(Up, vy)

— e+ Dk —=2)]u/ =

/
—CU ==

kD
f(uv U) + —u” ’
2
89(1‘/7 U) K
where u = u(§) and v = v(§). Subsequently, if

we replace € by €* in the latter equation,

where,
2)Vu,
c

5*:€|:1+M} ,

we take the system of equations,

— e+ Dk -2 = f(u,v)+ %u” ,

—[c+ Dk -2 = e*g(u,v).

Kouvaris, Isele, Mikhailov, Schéll EPL (2014) d
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Saddle-node bifurcations

erefore, In

e trees with ¢,
velocity ¢(e*) of an excitation wave will be

equal to the sum ¢+ D(k — 2), i.e.,
c(e*)=c+D(k—-2).

Numerical simulations have revealed that for
very small  the velocity ¢ depends linearly on
this parameter, i.e.,

c(e) = co(1 — xe),

where x is a numerical factor independent of ¢.

Substituting expressions for ¢* and ¢(e*) into
the latter equation we find an approximate
analytical expression for the velocity of an
excitation wave,

c = 5 [co(1 —ex) — D (k — 2)]

Wit Hln RA:LI

€ propagation

1
:i:% {[D(k; —2)—co(1— ex)}Q —4dcoDex (k — 2)}

S ek=ll EDI (901 4)

Continuation of the profile equations,

u = w

o = —clg(u,v)

W= o {0+ e+ Dk~ 2w}
T T T T ([l

2.0

— continuation
* simulation

KNI
l - <1
: 4
10k
05 %}A
------ —KF
0.0 L _ e = = | T N
2.0 2.1 2.2 2.3 24 R(A)

1/2
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Ecological multiplex




Ecological multiplex

Ecological networks may have different type of links/pathways, which are used by
different species. This allows for their interpretation in the framework of multiplex
networks, where Turing patterns can develop.

30



Prey-predator systems with different migration pathways




Activator-inhibitor dynamics on multiplex networks

N
Flus,vi) + 0 3Ly,
j=1

P
(u) N
G i}i = g(ui,vi) —I-O'(”) ZLE;)UJ .
j=1
7@
e u;, v; are the densities of activator and
e inhibitor in the nodes i(*) and 7(*)
e Functions f, g define the dynamics of
activator and inhibitor in the nodes (%)
,L(U) (v)
and @

o L(") and L) are the Laplacian matrices
of the networks G(*) and G()

e o(¥) and () are the rates of diffusional
mobility

This general formulation of the Multiplex-RD systems can be used in any different
context of activator-inhibitor dynamics, e.g. neurodynamics, prey-predator, chemical
reactions, etc., where different species move within different networks.

32



The Mimura-Murray ecological model

We consider the Mimura-Murray ecological model
(activator u — prey and inhibitor v — predator):

fuw) = (M _U)u,

c
g(u,v) = (u—dv—1)v.
20
15
- > 10
5
L \\ 0
15 20 20
u u
Limit cycle Stable focus (@, ) = (5,10)
(a=35, b=16, c=9, c=0.3) (a=35, b=16, c=9, c=0.4)

Mimura, Murray J. Theor. Biol. 75 (1978)
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Development of the Turing pattern
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Kouvaris, Hata, Diaz-Guilera, Sci Rep 5, 10840 (2015)
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Amplitude of the Turing pattern

a b
14 T T T T
100 [ _ J
10} ;
=60 =
< < 6L
- st ]
L ‘ ’ .
20 L oL W’Jﬁ”»’» d
L . L g_l_.
200 400 o0 110 130
<k(”)) <k(v)>

Kouvaris, Hata, Diaz-Guilera, Sci Rep 5, 10840 (2015)
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Linear stability analysis

The multiplex organized reaction-diffusion systems reads,

N
Flui,vi) + ot ZLE;)“]' ;

@ =
Jj=1
N

v = g(ui,v) + PASY) ZLE;’)UJ' .
i=1

We linearise about the uniform steady state by introducing small perturbations as
(ui,vi) = (@,0) + (du;, 6v;)

N
6"[1@ = fudu; + fodv; + 0'<u> ZL§7>6U7 ’
j=1

Sv;

N
Gudu; + gudv; + (¥ ZLE;})&)J- .
j=1

where fu = 0f/0ul(y v)=(a,0)s fo = Of/0V|(uv)=(a,v)--- are partial derivatives at the
uniform steady state.

36



Linear stability analysis

Alternatively, linearized system can be written as,

w=(J + L)w

where:
j — f’(L] f’UI
gul  gol

() L) 0
L= < 0 5@ L)

w = (bu1,- -+ ,0un,dv1,---,06vn)T is the perturbation vector; T is the N x N
identity matrix.

Perturbation vector w should be expanded over the set of eigenvectors of the matrix
Q = J + L. It is however difficult to calculate them for different network topologies,
i.e. different Laplacian matrices L(*) and L(*).

Here we propose an approximation technique to analyze the linear stability.

37



Linear stability analysis

Matrix L is splitted as £ = Qg — D, where

() A(w) 0
Qo = < 0 o) A®) )

and

o p) 0
D= ( 0 & D) >

Matrices A(®) and A() are the adjacency matrices of layers G(*) and G(*),
respectively. Matrices D(*) and D®) are the corresponding degree matrices

Then, matrix Q can be rewritten as, Q@ = Qg + 91, where

Qi =J-D (fulo(“)D“") fol >
1=J—-D=

gul gul — o) D)

Examining matrices Qg and Qj, it can be found that
the first has elements with values of order O(c(*)) or O(c(*)), while

the second has elements with values of order O(c(®) k(")) or O(a(V)E(¥)).
38



Linear stability analysis: approximation

If both layers are dense enough, i.e. (k(*)) > 1 and (k(*)) > 1, then we can clearly
see that the elements of matrix Q1 take larger enough values than those of matrix
Qo, so that, Qp could be neglected yielding to the approximate linearized equation

dw/dt = Q1 w.

Then, the characteristic equation for the eigenvalues X is given by

fu — oW g — X fo B
o ( 9 g —o®r® 5 | =%

and is the same for each pair of nodes i(“), i(w),
In this approximation, Qp, which is associated with the precise architecture of the
layers, is neglected and, each node is characterized only by its degree.

This is similar to the heterogeneous mean-field method.

39



Condition for Turing instability

Multiplex topology-driven instability occurs when the degrees of the nodes i(*) and
i) in the layers G(*) and G(v), respectively, satisfy the condition

(W) — fugo = fogu — fus kM)
o g,vo'<u) — o) g() ()

)

a b
T 25 T T
or i 20+
J4f 1 = 15}
= 10t
oL i
5F
0 L L L
100 200 0 200 400 600
k('”) k(u)

Kouvaris, Hata, Diaz-Guilera, Sci Rep 5, 10840 (2015)
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Formation of Turing patterns

k’(u> _ fugv — fogu — fu5<v>k(v)

9o (@) — () g (V) ()
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a b c
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Kouvaris, Hata, Diaz-Guilera, Sci Rep 5, 10840 (2015)
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Actual Turing patterns

Kouvaris, Hata, Diaz-Guilera, Sci Rep 5, 10840 (2015)
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Games on networks




Games on networks

Chimera states are studies in rings of non-locally coupled strategies in public goods
games.

43



Public Goods Games

ooperators Defectors
f\ ﬁ‘ ﬁ \jq\f ﬁ:} The average payoffs read
= s T 1—2" rl—2z" 1—2"
] Po=r 1- +— —1—d -1

contribution | panefits 1—=2 n(l— z) nl-—z 1—2z

Public Good e - 2n

uplic Goods -z

P=PR+1-— "%

n l—z

In the public good game and P 0
every cooperator yields a ‘T

benefit 7, while defectors Parameter n is the group size, d is the damage that jokers

produce no benefit getting inflicts on the public good.

their share of the public good

Let us consider the replicator-mutator equations where the stategies of cooperators and defectors
are coupled according to a ring architecture,

j=i+R

. _ o

z; = wi(Pyi — P)+ p(l —3z;) + R Z (zj —x4),
j=i—R
B o J=iHR

g = wiRa = P)+u(l=3y) + = D> (5 —vi),
j=i—R

z = l—zxz—y

where x, y and z are the fractions of cooperators, defectors and jokers, respectively. W



Public Goods Games

(a) D (b) D (a)
0.15
0.10 | Hopf bifurcation R
< 005t / 1
0.00
J C ) C -0.05 ]

)

(b
(c) D (d) D 0.012F g
0.008 |- B
ES Stable focus
0.004 4
Limit cycle
0.000 L L L L
] C ) C 00 01 02 03 04 05

The presence of jokers induces periodically a burst of cooperators
Kouvaris, Requejo, Hizanidis, Diaz-Guilera, CHAOS (2016)

Re()
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Chimera states in networked PG games

(a)
1000

-
031 |, 034 —m o«
(e)
Dy D
. 5
< 5
J C

t/10%

Kouvaris, Requejo, Hizanidis, Diaz-Guilera, CHAOS (2016)
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Chimera states in networked PG games

(a) (b)

0.012 -

Chimera stated

3 0.008
<

0.004

—
Synchronization
0.000 !

1 1 |
120 140 160 180 120 140 160 180
R

=

Kouvaris, Requejo, Hizanidis, Diaz-Guilera, CHAOS (2016)
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Chimera states in networked PG games

(b)

0.136
0.009 5
3 0.006
<
0.003
0.000 e 1

024 028 032 0.36 024 028 032 036

Kouvaris, Requejo, Hizanidis, Diaz-Guilera, CHAOS (2016)
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Chimera states in modular neural
networks




Chimera states in modular neural networks

C-elegans has two different type of links, chemical (synapses) and electrical (gap
junctions). This allows for a multiplex interpretation of its brain, where chimera-like
states have been, numerically, found.
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The C-elegans brain network

Community 4 Community 5 Community 6 pz = q; — ap? + bp% —n; + Text
N
+ g L(f/’]//([;/)
j=1
N
= gn(pi — Veyn) Zcijs(pj) )
j=1
. 2
g = c—dpi —qi,
ni = rla(pi —po) —nil,
Community 1 Community 2 Community 3
where H(p) = p and

Hizanidis, Kouvaris, Zamora-Lépez, Diaz-Guilera, Antonopoulos. Sci Rep
_ 1 .
S(p) = TFexp[—A(P—Osyn)] [pi| < 2, thus,

(2016)
(pi — Viyn) is negative for excitatory coupling.

Baptista, Kakmeni, Grebogi, PRE 82 (2010)

Laplacian ;1 electrical (linear) coupling within each community, (Gi; = Aij; — k)

Adjacency C;;: chemical (nonlinear) coupling between the communities.

On Monday Myrto Villia will present results using the real chemical and electrical

networks 49



Characterize the modular structure

e size of circles is proportional
a b to number of nodes in

Community 4 Community 5 Community 6
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Klimm, Borge-Holthoefer, Wessel, Kurths,
Zamora-Lépez, New J. Phys., 2014

Hizanidis, Kouvaris, Zamora-Lépez, Diaz-Guilera, Antonopoulos. Sci Rep (2015) 50



Chimera-like states in the c-elegans brain network
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Take-home message

Complex networks (simplex, modular, multiplex) support self-organization processes:

1. Traveling fronts

2. Stationary localized patterns
3. Excitation waves
4

. Turing patterns

o1

. Synchronization

6. Chimera sates
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