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A brief introduction on pattern formation in continuous media and the networks.
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The pioneer Alan Turing

u̇ = f(u, v) + σu∇2u ,

v̇ = g(u, v) + σv∇2v .
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Self-organization far from equilibrium

Reaction-diffusion systems support a wealth of self-organization phenomena

Turing patterns

Nakamasu, Takahashi, Kanbe, Kondoab,PNAS 106 (2009)

Synchronization

Osipov, Kurths, Zhou, Synchronization in Oscillatory Networks,

Berlin 2007

Spiral waves

Bär, Gottschalk, Eiswirth, Ertl, J. Chem. Phys. (1993)

Propagating fronts

Wikipedia
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Collective dynamics in complex networks

The nodes and the links of such networks may represent:

• Individual habitats and dispersal connections between them

• Electro-chemical units which are connected with resistors

• Neural cells and the synapses connecting them

• Individuals which interact via their social networks

Synchronization of

coupled oscillators in

networks:

Arenas et al, Synchronization in

complex networks, Phys Rep

(2008)

Chimera states in

non-local rings of

coupled oscillators:

Kouvaris, Hizanidis et al, Chaos

(2016)

Turing patterns in

network-organized

activator-inhibitor

systems:

Nakao, Mikhailov, Nat Phys

(2010)

Epidemic spreading in

networks:

(SIR: susceptible, infected,

removed; SIS...)

Colizza, Pastor-Satorras,

Vespignani, Nat Phys (2007)
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Dynamics on networks

In order to study dynamics on networks we need

• A dynamical system (usually non-linear)

• Monostable

• Bistable

• Oscillator

• Ising model, Diffusion, Maps,...

• A network (usually complex)

• Simplex

• Multiplex/Multilayer

• Modular

• Colored

• Metabolic networks, Facebook, Twitter, Mobility networks, The Brain, ...

u̇i = F(ui) + σ
N∑

j=1

H(uj)

One can also study agent-based models in networks (Monte Carlo methods, etc...)
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Complex networks

1. Scale-free
Power-law degree distribution

P (k) ∼ k−γ , typically 2 ≤ γ ≤ 3

〈k〉 = 2m

(m is the number of links of a new added node)

2. Erdös-Rényi
Poisson degree distribution

P (k) ∼ (pN)ke−pN
k!

〈k〉 = pN

(p is the probability to have a link between 2 of N

nodes)

3. k-ary trees

Each node has no ore than k− 1

“children”

#nodes = #links-1

(the nodes population in each

level grows exponentially with the

distance from the root)

In Erdös-Rényi networks, the clustering coefficient ( number of closed triplets
number of all triplets

) is C =
〈k〉
N

. If

N →∞, then C → 0, as required by the tree structure

Dorogovtsev, Mendes,Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford 2003
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Reaction-diffusion systems on networks

One-component reaction-diffusion systems:

u̇i = f(ui) +D
N∑

j=1

(Tijuj − Tjiui)

• function f(ui) describes the local dynamics in the node i

• T is the adjacency matrix whose elements take the values Tij = 1 if the nodes i

and j are connected and Tij = 0 otherwise.

In undirected networks the adjacency matrix is summetric Tij = Tji
In weighted networks Tij can take values different than 0 and 1.

The RD system can also be written as

u̇i = f(ui) +D
N∑

j=1

Lijuj

• L is the Laplacian matrix whose elements are given by Lij = Tij − kiδij
• ki is the number of connections (degree) of a node i ki =

∑N
j=1 Tji

• D is the rate of diffusive transport of u across the links.

For the 1D chains this equation reads as

u̇i = f(ui) +D(ui−1 − 2ui + ui+1)
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We discuss the formation mechanism of localized patterns in networks of coupled

bistable elements.
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The Schlögl bistable model in networks

Friedrich Schlögl (1917-2011) had proposed a hypothetical

trimolecular chemical reaction with an autocatalytic state

given by the stochiometric scheme:

A+ 2U
c1 //

3U
c2

oo

U
c3 //

B
c4

oo

If the concentrations of the species A,B are constant, by

influx of A into the system and outflux of B out of the

system, the system is maintained in a nonequilibrium state.

The evolution of the species U concentration in this

nonequilibrium state is given by,

u̇(t) = f(u) = −(u− r1)(u− r2)(u− r3)

We address the questions:

• How the topology of the network

shapes the hosted dynamics?

• Can we control the dynamics and

design new patterns?

F. Schlögl, Z. Physik 253, 147 (1972)
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Bistable dynamics / Bistable media

Local dynamics:
∂

∂t
u(t) = f(u) = −(u− r1)(u− r2)(u− r3)

Chemical potential: V (u) = −
∫
f(u)du

Bistable medium:
∂

∂t
u(x, t) = f(u) +D∇2u(x, t)
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Regular trees with fixed branching factor

All nodes lying in the same distance from the root can be grouped into a single shell:

A node at the shell l should be diffusively coupled to k − 1 nodes in the next shell l + 1 and to

just one node in the previous shell l− 1.

The evolution of the activation level ul is then described by:

u̇l = f(ul) +D(ul−1 − ul) +D(k − 1)(ul+1 − ul)
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Discrete 1D chains

u̇l = f(ul) +D [ul−1 − 2ul + ul+1]

Mitkov, Kladko, Pearson, PRL 81 (1998)

A stationary front (pinned) solution is found for

u̇l = 0.

um−1 ≈ r3 and um+1 ≈ r1

g(um) ≡ u̇m = f(um) +D(r3 − 2um + r1)
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Regular trees

u̇l = f(ul) +D [ul−1 − kul + (k − 1)ul+1]

k is the nodes degree and thus takes only integer values. However, in our theoretical

approximation k is treated as a continuous parameter.

actual pinned front from the simulations

In the same manner we assume that

um−1 ≈ r3 and um+1 ≈ r1

g(um) ≡ u̇m = f(um) +D [r3 − kum + (k − 1)r1]

Kouvaris, Kori, Mikhailov PLoS ONE (2012)
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Bifurcation diagram

Kouvaris, Kori, Mikhailov PLoS ONE (2012)
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Electrochemical experiments

Kouvaris, Sebek, Mikhailov, Kiss, Angewandte Chemie 128 (2016)
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Experimental observation of patterns in bistable trees

Kouvaris, Sebek, Mikhailov, Kiss, Angewandte Chemie 128 (2016)
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Experimental observation of patterns in bistable trees

Kouvaris, Sebek, Mikhailov, Kiss, Angewandte Chemie 128 (2016)
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We discuss control schemes and the purposeful design of stationary and oscillatory

patterns in networks of bistable nodes.
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Control of pattern formation in bistable trees

Let us now consider the local

bistable dynamics

f(u, h) = u(h− u)(u− 1) ,

where h specifies the activation

threshold.

Global negative feedback

The parameter

h = h0 + µ(S(t)− S0) ,

depends on the total activation

S(t) =

N∑
j=1

uj(t),

and increases when more nodes

are activated, so that a negative

feedback is realized.

Krisher, Mikhailov, PRL (1994) Kouvaris, Mikhailov EPL (2013)
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Global control in random networks

Kouvaris, Mikhailov EPL (2013)
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Global control in random networks

The size S of a stationary pattern grows

like,

Ṡ = c(h) ,

where c(h) is the propagation velocity of a

front. When a stationary pattern is

established, its size should not change with

time and thus Ṡ = 0, namely

c(h) = 0

c [h0 + µ(S − S0)] = 0

Let us assume here that the velocity is

dependent on k as c(h) = D(c0 −
√
kh).

Then the intensity of the feedback can be

given by

µ =
c0 −

√
kh0√

k(S − S0)
.

where we see that µ ∝ 1/(S − S0) . Then

by taking into account that 〈u〉 ∝ (S−S0)

we conclude on the relation

〈u〉 ∝ µ−1
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Local control in random networks

hi = h0 + µH(ki)(S − S0) where H(ki) is the step function.

H(ki) = 1 if k < k0 and

H(ki) = 0 if k ≥ k0

or

H(ki) = 1 if k > k0 and

H(ki) = 0if k ≤ k0

Kouvaris, Mikhailov EPL (2013)
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Excitable networks



Introduction

Bistable networks

Control of bistable networks

Excitable networks

Propagation failure

Kinematical theory

Ecological multiplex

Games on networks

Chimera states in modular neural networks

Networks of coupled excitable nodes (e.g. neurons) give rise to a rich spationtemporal

behaviour. Here we study propagation failure of excitations as a result of the nodes

connectivity degree.
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Fitzhugh-Nagumo dynamics on the trees

Let us now assume the local

excitable dynamics given by:

f(u, v) = u−
u3

3
− v

g(u, v) = u− β

and the network-organized

activator-inhibitor system:

u̇i = f(ui, vi) +D
N∑

j=1

Lijuj ,

v̇i = εg(ui, vi) .

On a regular tree this system

reads,

u̇r = f(ur, vr) +D[ur−1 − kur + (k − 1)ur+1] ,

v̇r = εg(ur, vr) .
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Kouvaris, Isele, Mikhailov, Schöll EPL (2014)
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Propagation failure of excitation waves
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Saddle-node bifurcations

An excitation wave on this ring of N shells is a periodic orbit of 2N ODEs, of the

system and thus can easily be continued, using AUTO-07p.
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Kinematical theory of excitation waves in the trees

u̇r = f(ur, vr) +D[ur−1 − kur + (k − 1)ur+1], v̇r = εg(ur, vr)

we substitute ur−1 and ur+1 with

their Taylor expansions:

ur−1 ≈ ur −∇u+
1

2
∆u

ur+1 ≈ ur +∇u+
1

2
∆u .

The continuous system then reads,

u̇(x) = f(u, v) +
Dk

2
∆u+D(k − 2)∇u ,

v̇(x) = εg(u, v) .

By introducing the moving reference

frame

ξ = r − ct

where the profile of the wave is

stationary we can write,

− [c+D(k − 2)]u′ = f(u, v) +
kD

2
u′′ ,

−cv′ = εg(u, v) ,

where u = u(ξ) and v = v(ξ). Subsequently, if

we replace ε by ε∗ in the latter equation,

where,

ε∗ = ε

[
1 +

D(k − 2)

c

]
,

we take the system of equations,

− [c+D(k − 2)]u′ = f(u, v) +
kD

2
u′′ ,

−[c+D(k − 2)]v′ = ε∗g(u, v) .

Kouvaris, Isele, Mikhailov, Schöll EPL (2014) d
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Saddle-node bifurcations
Therefore, in the trees with ε∗, the propagation

velocity c(ε∗) of an excitation wave will be

equal to the sum c+D(k − 2), i.e.,

c(ε∗) = c+D(k − 2) .

Numerical simulations have revealed that for

very small ε the velocity c depends linearly on

this parameter, i.e.,

c(ε) = c0(1− χε) ,

where χ is a numerical factor independent of ε.

Substituting expressions for ε∗ and c(ε∗) into

the latter equation we find an approximate

analytical expression for the velocity of an

excitation wave,

c =
1

2
[c0(1− εχ)−D (k − 2)]

±
1

2

{
[D(k − 2)− c0 (1− εχ)]2 − 4c0Dεχ (k − 2)

}1/2
.

Continuation of the profile equations,

u′ = w

v′ = −c−1g(u, v)

w′ = −
2

Dk
{f(u, v) + [c+D(k − 2)]w} .
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28



Random networks
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Ecological networks may have different type of links/pathways, which are used by

different species. This allows for their interpretation in the framework of multiplex

networks, where Turing patterns can develop.
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Prey-predator systems with different migration pathways
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Activator-inhibitor dynamics on multiplex networks

i u( )

i v( )

G u( )

G v( )

u̇i = f(ui, vi) + σ(u)
N∑

j=1

L
(u)
ij uj ,

v̇i = g(ui, vi) + σ(v)
N∑

j=1

L
(v)
ij vj .

• ui, vi are the densities of activator and

inhibitor in the nodes i(u) and i(v)

• Functions f , g define the dynamics of

activator and inhibitor in the nodes i(u)

and i(v)

• L(u) and L(v) are the Laplacian matrices

of the networks G(u) and G(v)

• σ(u) and σ(v) are the rates of diffusional

mobility

This general formulation of the Multiplex-RD systems can be used in any different

context of activator-inhibitor dynamics, e.g. neurodynamics, prey-predator, chemical

reactions, etc., where different species move within different networks.
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The Mimura-Murray ecological model

We consider the Mimura-Murray ecological model

(activator u→ prey and inhibitor v → predator):

f(u, v) =

(
a+ bu− u2

c
− v
)
u ,

g(u, v) = (u− dv − 1)v .
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(a=35, b=16, c=9, c=0.3) (a=35, b=16, c=9, c=0.4)

Mimura, Murray J. Theor. Biol. 75 (1978)

33



Development of the Turing pattern
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Amplitude of the Turing pattern
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Linear stability analysis

The multiplex organized reaction-diffusion systems reads,

u̇i = f(ui, vi) + σ(u)
N∑

j=1

L
(u)
ij uj ,

v̇i = g(ui, vi) + σ(v)
N∑

j=1

L
(v)
ij vj .

We linearise about the uniform steady state by introducing small perturbations as

(ui, vi) = (ū, v̄) + (δui, δvi)

˙δui = fuδui + fvδvi + σ(u)
N∑

j=1

L
(u)
ij δuj ,

δ̇vi = guδui + gvδvi + σ(v)
N∑

j=1

L
(v)
ij δvj .

where fu = ∂f/∂u|(u,v)=(ū,v̄), fv = ∂f/∂v|(u,v)=(ū,v̄)... are partial derivatives at the

uniform steady state.
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Linear stability analysis

Alternatively, linearized system can be written as,

ẇ = (J + L)w

where:

J =

(
fuI fvI

guI gvI

)

L =

(
σ(u)L(u) 0

0 σ(v)L(v)

)

w = (δu1, · · · , δuN , δv1, · · · , δvN )T is the perturbation vector; I is the N ×N
identity matrix.

Perturbation vector w should be expanded over the set of eigenvectors of the matrix

Q = J + L. It is however difficult to calculate them for different network topologies,

i.e. different Laplacian matrices L(u) and L(v).

Here we propose an approximation technique to analyze the linear stability.
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Linear stability analysis

Matrix L is splitted as L = Q0 −D, where

Q0 =

(
σ(u)A(u) 0

0 σ(v)A(v)

)
and

D =

(
σ(u)D(u) 0

0 σ(v)D(v)

)

Matrices A(u) and A(v) are the adjacency matrices of layers G(u) and G(v),

respectively. Matrices D(u) and D(v) are the corresponding degree matrices

Then, matrix Q can be rewritten as, Q = Q0 +Q1, where

Q1 = J −D =

(
fuI − σ(u)D(u) fvI

guI gvI − σ(v)D(v)

)

Examining matrices Q0 and Q1, it can be found that

the first has elements with values of order O(σ(u)) or O(σ(v)), while

the second has elements with values of order O(σ(u)k(u)) or O(σ(v)k(v)).
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Linear stability analysis: approximation

If both layers are dense enough, i.e. 〈k(u)〉 � 1 and 〈k(v)〉 � 1, then we can clearly

see that the elements of matrix Q1 take larger enough values than those of matrix

Q0, so that, Q0 could be neglected yielding to the approximate linearized equation

dw/dt = Q1w.

Then, the characteristic equation for the eigenvalues λ is given by

det

(
fu − σ(u)k(u) − λ fv

gu gv − σ(v)k(v) − λ

)
= 0 ,

and is the same for each pair of nodes i(v), i(u).

In this approximation, Q0, which is associated with the precise architecture of the

layers, is neglected and, each node is characterized only by its degree.

This is similar to the heterogeneous mean-field method.
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Condition for Turing instability

Multiplex topology-driven instability occurs when the degrees of the nodes i(u) and

i(v) in the layers G(u) and G(v), respectively, satisfy the condition

k(u) =
fugv − fvgu − fuσ(v)k(v)

gvσ(u) − σ(u)σ(v)k(v)
,
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Kouvaris, Hata, D́ıaz-Guilera, Sci Rep 5, 10840 (2015)
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Formation of Turing patterns

k(u) =
fugv − fvgu − fuσ(v)k(v)
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Actual Turing patterns
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Games on networks
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Chimera states in modular neural networks

Chimera states are studies in rings of non-locally coupled strategies in public goods

games.
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Public Goods Games

In the public good game

every cooperator yields a

benefit r, while defectors

produce no benefit getting

their share of the public good

The average payoffs read

Px = r
x

1− z

(
1−

1− zn

n(1− z)

)
+
r

n

1− zn

1− z
−1−d

(
1− zn

1− z
− 1

)
and

Py = Px + 1−
r

n

1− zn

1− z
and

Pz = 0

Parameter n is the group size, d is the damage that jokers

inflicts on the public good.

Let us consider the replicator-mutator equations where the stategies of cooperators and defectors

are coupled according to a ring architecture,

ẋi = xi(Px,i − P̄ ) + µ(1− 3xi) +
σ

2R

j=i+R∑
j=i−R

(xj − xi) ,

ẏi = yi(Py,i − P̄ ) + µ(1− 3yi) +
σ

2R

j=i+R∑
j=i−R

(yj − yi) ,

z = 1− x− y

where x, y and z are the fractions of cooperators, defectors and jokers, respectively.
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Public Goods Games
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The presence of jokers induces periodically a burst of cooperators
Kouvaris, Requejo, Hizanidis, D́ıaz-Guilera, CHAOS (2016)
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Chimera states in networked PG games
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Kouvaris, Requejo, Hizanidis, D́ıaz-Guilera, CHAOS (2016)
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Chimera states in networked PG games

Kouvaris, Requejo, Hizanidis, D́ıaz-Guilera, CHAOS (2016)

47



Chimera states in networked PG games

Kouvaris, Requejo, Hizanidis, D́ıaz-Guilera, CHAOS (2016)
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Chimera states in modular neural
networks
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Chimera states in modular neural networks

C-elegans has two different type of links, chemical (synapses) and electrical (gap

junctions). This allows for a multiplex interpretation of its brain, where chimera-like

states have been, numerically, found.
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The C-elegans brain network

Community 1 Community 2 Community 3

Community 6Community 5Community 4

Hizanidis, Kouvaris, Zamora-López, D́ıaz-Guilera, Antonopoulos. Sci Rep

(2016)

The Hindmarsh-Rose model:

ṗi = qi − αp3
i + bp2

i − ni + Iext

+ gl

N∑
j=1

GijH(pj)

− gn(pi − Vsyn)
N∑

j=1

CijS(pj) ,

q̇i = c− dp2
i − qi ,

ṅi = r[a(pi − p0)− ni] ,

where H(p) = p and

S(p) = 1
1+exp[−λ(p−Θsyn)]

|pi| < 2, thus,

(pi − Vsyn) is negative for excitatory coupling.

Baptista, Kakmeni, Grebogi, PRE 82 (2010)

Laplacian Gij : electrical (linear) coupling within each community, (Gij = Aij − ki)
Adjacency Cij : chemical (nonlinear) coupling between the communities.

On Monday Myrto Villia will present results using the real chemical and electrical

networks 49



Characterize the modular structure

Participation
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• size of circles is proportional

to number of nodes in

community

• width of arrow is proportional

to number of chemical

synapses

• size of arrow head is

proportional to number of

chemical synapses divided by

the mean degree of the target

community

Klimm, Borge-Holthoefer, Wessel, Kurths,

Zamora-López, New J. Phys., 2014

Hizanidis, Kouvaris, Zamora-López, D́ıaz-Guilera, Antonopoulos. Sci Rep (2015) 50



Chimera-like states in the c-elegans brain network
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Hizanidis, Kouvaris, Zamora-López, D́ıaz-Guilera, Antonopoulos. Sci Rep (2015)
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Take-home message

Complex networks (simplex, modular, multiplex) support self-organization processes:

1. Traveling fronts

2. Stationary localized patterns

3. Excitation waves

4. Turing patterns

5. Synchronization

6. Chimera sates
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